Skip to main content
Log in

Catalyst-free synthesis of silicon nanowires by oxidation and reduction process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new process has been developed to grow silicon (Si) nanowires (NWs), and their growth mechanisms were explored and discussed. In this process, SiNWs were synthesized by simply oxidizing and then reducing Si wafers in a high temperature furnace. The process involves H2, in an inert atmosphere, reacts with thermally grown SiO2 on Si at 1100 °C enhancing the growth of SiNWs directly on Si wafers. High-resolution transmission electron microscopy studies show that the NWs consists of a crystalline core of ~25 nm in diameter and an amorphous oxide shell of ~2 nm in thickness, which was also supported by selected area electron diffraction patterns. The NWs synthesized exhibit a high aspect ratio of ~167 and room temperature phonon confinement effect. This simple and economical process to synthesize crystalline SiNWs opens up a new way for large scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) Nano Lett 3:149

    Article  Google Scholar 

  2. He R, Yang P (2006) Nature Nanotechnol 1:42

    Article  Google Scholar 

  3. Chan CK, Peng H, Liu G, Mcllwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nature Nanotechnol 3:31035

    Article  Google Scholar 

  4. Granett E, Yang P (2010) Nano Lett 10:1082

    Article  Google Scholar 

  5. Pignalosa P, Lee H, Qiao L, Tseng M, Yi AY (2011) AIP Advances 1:032124

    Article  Google Scholar 

  6. Kalita G, Adhikari S, Aryal HR, Afre R, Soga T, Sharon M, Koichi W, Umeno M (2009) J Phys D 42:115104

    Article  Google Scholar 

  7. Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Adv Mater 21:2681

    Article  Google Scholar 

  8. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4:433

    Article  Google Scholar 

  9. Ferry DK (2008) Science 319:579

    Article  Google Scholar 

  10. Colli A, Hofmann S, Fasoli A, Ferrari AC, Ducati C, Dunin-Borokowski RE, Robertson J (2006) Appl Phys A 85:247

    Article  Google Scholar 

  11. Kim BS, Koo TW, Lee JH, Kim DS, Jung YC, Hwang SW, Choi BL, Lee EK, Kim JM, Whang D (2009) Nano Lett 9:864

    Article  Google Scholar 

  12. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58:R16024

    Article  Google Scholar 

  13. Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) J Phys Chem B 105:2507

    Article  Google Scholar 

  14. Garnett EC, Liang W, Yang P (2007) Adv Mater 19:2946

    Article  Google Scholar 

  15. Schmidt V, Wittemann JV, Gosele U (2010) Chem Rev 110:361

    Article  Google Scholar 

  16. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471

    Article  Google Scholar 

  17. Schubert L, Werner P, Zakharov ND, Gerth G, Kolb FM, Long L, Gosel U, Tan TY (2004) Appl Phys Lett 84:4968

    Article  Google Scholar 

  18. Morales AM, Lieber CM (1998) Science 279:208

    Article  Google Scholar 

  19. Niu J, Sha J, Yang D (2004) Physica E 23:131

    Article  Google Scholar 

  20. Yang HJ, Yuan FW, Tuan HY (2010) Chem Commun 46:6105

    Article  Google Scholar 

  21. Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15:635

    Article  Google Scholar 

  22. Wang N, Tang YH, Zhang YF, Yu DP, Lee CS, Bello I, Lee ST (1998) Chem Phys Lett 283:368

    Article  Google Scholar 

  23. Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee ST (1999) Chem Phys Lett 299:237

    Article  Google Scholar 

  24. Menga F, Li J, Hong Z, Zhia M, Sakla A, Xianga C, Wua N (2013) Catal Today 199:48

    Article  Google Scholar 

  25. Lu J, Zeng X, Liu H, Zhang W, Zhang Y (2012) J Phys Chem C 116:23013

    Article  Google Scholar 

  26. Dhar S, Giri PK (2011) Int J Nanosci 10:13

    Article  Google Scholar 

  27. Piscanec S, Ferrari AC, Cantoro M, Hofmann S, Zapien JA, Lifshitz Y, Lee ST, Robertson J (2003) J Mater Sci Eng C 23:931

    Article  Google Scholar 

  28. Compaan A, Lee MC, Trott G (1985) Phys Rev B 32:6731

    Article  Google Scholar 

  29. Jellison GE, Modine FA (1983) Phys Rev B 27:7446

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Foreign Affairs and International Trade Canada (DFAIT) under Commonwealth Graduate Student Exchange Program Scholarship (2011–2012). Q.Y. and A.H. acknowledge the support from NSERC and Canada Research Chair Program. S.K.B. and Q.Y. acknowledge the technical assistance from Dave McColl, Plasma Physics Laboratory, Rob Peace, Department of Mechanical Engineering and Jason Maley, SSSC, University of Saskatchewan, Canada. S.K.B. and O.J. acknowledges Prof. T. Harinarayana, Director, GERMI Research, Innovation and Incubation Centre, India. The EM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoqin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behura, S.K., Yang, Q., Hirose, A. et al. Catalyst-free synthesis of silicon nanowires by oxidation and reduction process. J Mater Sci 49, 3592–3597 (2014). https://doi.org/10.1007/s10853-013-7476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7476-5

Keywords

Navigation