Skip to main content
Log in

Microstructural evolution in two alkali multicomponent silicate glasses as a result of long-term exposure to solid oxide fuel cell environments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructural evolution in two potential solid oxide fuel cell (SOFC) sealing glass materials exposed to air and a gas mixture of steam + H2 + N2 at 800 °C up to 10000 h was determined. The glass exposures were performed on common SOFC substrates like alumina and zirconia. Characterization of the crystalline phases and pore size distribution was performed for the specimens with various exposure conditions. Comparison of the microstructural and chemical stability of the two glasses was performed based on known trends related to glass chemistry. It was observed that multicomponent glasses followed few rules for chemical and microstructural stability reported in the literature for glasses with fewer components. The two glasses examined in this study displayed adequate resistance to devitrification but marginal resistance to porosity changes in the SOFC environment exposure. The implications of the results for the design and long-term performance of SOFC seals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ormerod RM (2003) Chem Soc Rev 32:17

    Article  CAS  Google Scholar 

  2. Nagel FP, Schildhauer TJ, Biollaz SMA, Wokaun A (2008) J Power Sources 184:143

    Article  CAS  Google Scholar 

  3. Fergus JW (2005) J Power Sources 147:46

    Article  CAS  Google Scholar 

  4. Mahapatra MK, Lu K (2010) J Power Sources 195:7129

    Article  CAS  Google Scholar 

  5. Mahapatra MK, Lu K (2010) Mat Sci Eng R 67:65

    Article  Google Scholar 

  6. Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Miyake Y, Nishio K (2000) J Power Sources 90:163

    Article  CAS  Google Scholar 

  7. Meinhardt KD, Kim DS, Chou YS, Weil KS (2008) J Power Sources 182:188

    Article  CAS  Google Scholar 

  8. Singh RN (2007) Int J Appl Ceram Tech 4:134

    Article  CAS  Google Scholar 

  9. Chou Y-S, Thomsen EC, Williams RT, Choi JP, Canfield NL, Bonnett JF, Stevenson JW, Shyam A, Lara-Curzio E (2011) J Power Sources 196:2709

    Article  CAS  Google Scholar 

  10. Trejo R, Lara-Curzio E, Shyam A, Kirkham M, Garcia-Negron V, Wang Y (2012) Int J Appl Glass Sci 3:369

    Article  CAS  Google Scholar 

  11. Chou Y-S, Thomsen EC, Choi JP, Stevenson JW (2012) J Power Sources 197:154

    Article  CAS  Google Scholar 

  12. Chou Y-S, Choi JP, Stevenson JW (2012) Int J Hyd Energy 37:18372

    Article  CAS  Google Scholar 

  13. Ladouceur A, Shyam A, Trejo RM, Lara-Curzio E (2013) (to be submitted)

  14. Zhang T, Fahrenholtz WG, Reis ST, Brow RK (2008) J Amer Cer Soc 91:2564

    Article  CAS  Google Scholar 

  15. Mahapatra M, Lu K, Bodnar R (2009) Appl Phys A Mater Sci Process 95:493

    Article  CAS  Google Scholar 

  16. Sohn S-B, Choi S-Y, Kim G-H, Song H-S, Kim G-D (2004) J Am Ceram Soc 87:254

    Article  CAS  Google Scholar 

  17. Lara C, Pascual MJ, Durán A (2004) J Non Cryst Solids 348:149

    Article  CAS  Google Scholar 

  18. Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) J Mat Sci 35:3089

    Article  CAS  Google Scholar 

  19. Mahapatra MK, Lu K, Reynolds WT Jr (2008) J Power Sources 179:106

    Article  CAS  Google Scholar 

  20. Peng L, Zhu Q (2008) J Fuel Cell Sci Tech 5(3):031210

    Article  Google Scholar 

  21. Shelby JE (2005) Introduction to glass science and technology, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  22. Scherer GW (1998) J Am Ceram Soc 81:49

    Article  CAS  Google Scholar 

  23. Simhan RG, Moore LL, Gunten PR (1985) J Mat Sci 20:1748

    Article  CAS  Google Scholar 

  24. Winkler EM (1975) Stone: properties, durability in man’s environment, 2nd edn. Springer, New York

    Google Scholar 

  25. Shyam A, Lara-Curzio E, Pandey A, Watkins TR, More KL (2012) J Am Ceram Soc 95:1682

    Article  CAS  Google Scholar 

  26. Chou Y-S, Stevenson JW (2002) J Power Sources 112:376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL. The authors are grateful for the support of NETL program managers Rin Burke, Wayne Surdoval, Travis Shultz and Shailesh Vora. The authors thank James Hemrick (ORNL) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Shyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyam, A., Trejo, R., McClurg, D. et al. Microstructural evolution in two alkali multicomponent silicate glasses as a result of long-term exposure to solid oxide fuel cell environments. J Mater Sci 48, 5880–5898 (2013). https://doi.org/10.1007/s10853-013-7384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7384-8

Keywords

Navigation