Skip to main content
Log in

Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO2–0.40–xZnO–0.10Na2O–0.08CaO glass series, (where x = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (Control 1.23, TGa-1 2.32 and TGa-2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm−1. Magic angle spinning nuclear magnetic resonance determined a chemical shift from −73, −75 to −77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL (2006) J Mat Sci Mater Med 17:967

    Article  CAS  Google Scholar 

  2. Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A (2009) Acta Biomater 5(1):374

    Article  CAS  Google Scholar 

  3. Ochoa I, Sanz-Herrera JA, García-Aznar JM, Doblaré M, Yunos DM, Boccaccini AR (2009) J Biomech 42(3):257

    Article  Google Scholar 

  4. Chen Q-Z, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR (2007) Acta Biomater 3(4):551

    Article  CAS  Google Scholar 

  5. Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27(11):2414

    Article  CAS  Google Scholar 

  6. Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L (2008) App Surf Sci 255(2):505

    Article  CAS  Google Scholar 

  7. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Biomaterials 25(27):5857

    Article  CAS  Google Scholar 

  8. El-Kady AM, Ali AF, Farag MM (2010) Mat Sci Eng: C 30(1):120

    Article  CAS  Google Scholar 

  9. Cannillo V, Chiellini F, Fabbri P, Sola A (2010) Comput Struct 92(8):1823

    Article  Google Scholar 

  10. Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q (2008) Acta Biomater 4(2):387

    Article  CAS  Google Scholar 

  11. Valappil SP, Ready D, Abou Neel EA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2009) Acta Biomater 5(4):1198

    Article  CAS  Google Scholar 

  12. da Silva JG, Azzolini LS, Wardell SMSV, Wardell JL, Beraldo H (2009) Polyhedron 28(11):2301

    Article  Google Scholar 

  13. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) J Clin Invest 117(4):877

    Article  CAS  Google Scholar 

  14. Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E (2008) Proc Natl Acad Sci USA 105(43):16761

    Article  CAS  Google Scholar 

  15. Bastosa TO, Soares B, Cisalpino P, Mendesc I, dosSantosa R, Beraldoc H (2010) Microbio Res 165(7):573

    Article  Google Scholar 

  16. Collery P, Keppler B, Madoulet C, Desoize B (2002) Critical Reviews Oncology/Hematology 42:283

    Article  Google Scholar 

  17. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M (2002) J Mater Sci Mater Med 13(12):1221

    Article  CAS  Google Scholar 

  18. Kokubo T, Kim H-M, Kawashita M (2003) Biomaterials 24:2161

    Article  CAS  Google Scholar 

  19. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    Article  CAS  Google Scholar 

  20. Higby PL, Shelby JE, Condrate RA (1986) J Non-Cryst Solids 84:93

    Article  CAS  Google Scholar 

  21. Baker DR (1995) Geochim Cosmochim Acta 59(17):3561

    Article  CAS  Google Scholar 

  22. Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, Trinka E, Iglseder B (2001) Hum Pathol 32(10):1136

    Article  CAS  Google Scholar 

  23. Carter DH, Sloan P, Brook IM, Hatton PV (1997) Biomaterials 18:459

    Article  CAS  Google Scholar 

  24. Boyd D, Towler MR, Watts S, Hill R, Wren AW, Clarkin OM (2008) J Mater Sci Mater Med 19:953

    Article  CAS  Google Scholar 

  25. Mysen BO, Virgo D, Scarfe CM (1980) Am Miner 65:690

    CAS  Google Scholar 

  26. Deligkaris D, Tadele TS, Olthuis W, van den Berg A (2010) Sense Actuator B 147:765

    Article  Google Scholar 

  27. Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, Sen CK, Guan J (2010) Acta Biomater 6(6):1978

    Article  CAS  Google Scholar 

  28. Yildirim E, Dupree R (2004) Bull Mater Sci 27(3):269

    Article  CAS  Google Scholar 

  29. Nicholson JW, Wilson AD (1993) Chemistry of solid state materials: acid-base cements–their biomedical and industrial applications. Cambridge University Press, Cambridge

    Google Scholar 

  30. Aguiar H, Serra J, Gonzalez P, Leon B (2009) J Non-Cryst Solids 335:475

    Article  Google Scholar 

  31. Wren AW, Laffir FR, Kidari A, Towler MR (2010) J Non-Cryst Solids 357(3):1021

    Article  Google Scholar 

  32. Gonzalez P, Serra J, Liste S, Chiussi S, Leon B, Perez-amor M (2003) J Non-Cryst Solid 320:92

    Article  CAS  Google Scholar 

  33. McMillian PW (1984) Am Miner 69:622

    Google Scholar 

  34. Branda F, Arcobello-Varlese F, Costantini A, Luciani G (2002) Biomaterials 23:711

    Article  CAS  Google Scholar 

  35. Stamboulis A, Law RV, Hill RG (2004) Biomaterials 25(17):3907

    Article  CAS  Google Scholar 

  36. Parkinson BG, Holland D, Smith ME, Larson C, Doerr J, Affatigato M, Feller SA, Howes AP, Scales CR (2008) J Non-Cryst Solids 354:1936

    Article  CAS  Google Scholar 

  37. Galliano PG, Porto JM, Spezl L, Varetti EL, Sobrados I, Sanz J (1994) Res Bull 29(12):1297

    Article  CAS  Google Scholar 

  38. Mysen BO, Virgo D, Kushiro I (1981) Am Miner 66:678

    CAS  Google Scholar 

  39. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxicology 23:761

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Dr. Ulrike Werner-Zwanziger from the Department of chemistry at Dalhausie University for the acquisition of the 29Si MAS-NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A.W., Keenan, T., Coughlan, A. et al. Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses. J Mater Sci 48, 3999–4007 (2013). https://doi.org/10.1007/s10853-013-7211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7211-2

Keywords

Navigation