Skip to main content

Advertisement

Log in

Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A grade 2 pure Ti was processed by high-pressure torsion (HPT) under 3.0 GPa for 10 revolutions to achieve an improved strength. Wear tests revealed that HPT only slightly improved the wear resistance of pure Ti. Subsequently, a TiN coating with a thickness of 2.5 μm was deposited on different Ti substrates to improve the wear resistance. Both indentation and scratch testing demonstrated a much improved load-bearing capacity when ultrafine-grained Ti was chosen as the substrate compared with coarse-grained Ti. All results indicate that pure Ti processed by HPT, when combined with a subsequent coating, represents a good candidate material for bio-implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Latysh V, Krallics G, Alexandrov I, Fodor A (2006) Curr Appl Phys 6:262

    Article  Google Scholar 

  2. Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J (2008) Adv Eng Mater 10:B15

    Article  CAS  Google Scholar 

  3. Semenova IP, Polyakov AV, Raab GI, Lowe TC, Valiev RZ (2012) J Mater Sci 47:7777

    Article  CAS  Google Scholar 

  4. Edalati K, Horita Z (2012) Rev Adv Eng Mater 31:5

    CAS  Google Scholar 

  5. Wang JT, Li Z, Wang J, Langdon TG (2012) Scr Mater 67:810

    Article  CAS  Google Scholar 

  6. Arzaghi M, Fundenberger JJ, Toth LS, Arruffat R, Faure L, Beausir B, Sauvage X (2012) Acta Mater 60:4393

    Article  CAS  Google Scholar 

  7. Okazaki Y, Gotoh E (2005) Biomaterials 26:11

    Article  CAS  Google Scholar 

  8. Okazaki Y, Gotoh E (2008) Corros Sci 50:3429

    Article  CAS  Google Scholar 

  9. Li Y, Wong C, Xiong J, Hodgson P, Wen C (2010) J Dent Res 89:493

    Article  CAS  Google Scholar 

  10. Makihira S, Mine Y, Nikawa H, Shuto T, Iwata S, Hosokawa R, Kamoi K, Okazaki S, Yamaguchi Y (2010) Toxicol In Vitro 24:1905

    Article  CAS  Google Scholar 

  11. Long M, Rack HJ (1998) Biomaterials 19:1621

    Article  CAS  Google Scholar 

  12. Elias CN, Lima JHC, Valiev R, Meyers MA (2008) JOM 6(3):46

    Article  Google Scholar 

  13. Diomidis N, Mischler S, More NS, Roy M (2012) Acta Biomater 8:852

    Article  CAS  Google Scholar 

  14. La P, Ma J, Zhu YT, Yang J, Liu W, Xue Q, Valiev RZ (2005) Acta Mater 53:5167

    Article  CAS  Google Scholar 

  15. Gao N, Wang CT, Wood RJK, Langdon TG (2012) J Mater Sci 47:4779

    Article  CAS  Google Scholar 

  16. Wang CT, Gao N, Wood RJK, Langdon TG (2011) J Mater Sci 46:123

    Article  Google Scholar 

  17. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190

    Article  CAS  Google Scholar 

  18. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  19. Wang CT, Gao N, Wood RJK, Langdon TG (2011) Mater Sci Forum 667–669:1101

    Google Scholar 

  20. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng, A 393:344

    Article  Google Scholar 

  21. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2012) Wear 280:28

    Article  Google Scholar 

  22. Wang CT, Gao N, Gee MG, Wood RJ, Langdon TG (2013) J Mech Behav Biomed Mater 17:166

    Article  CAS  Google Scholar 

  23. Gee MG, Nunn JW, Muniz-Piniella A, Orkney LP (2011) Wear 271:2673

    Article  CAS  Google Scholar 

  24. Vidakis N, Antoniadis A, Bilalis N (2003) J Mater Process Technol 143:481

    Article  Google Scholar 

  25. Wang CT, Escudeiro A, Polcar T, Cavaleiro A, Wood RJK, Gao N, Langdon TG (2013) Wear (in press)

  26. Zhao X, Fu W, Yang X, Langdon TG (2008) Scr Mater 59:542

    Article  CAS  Google Scholar 

  27. Zhao X, Yang X, Liu X, Wang X, Langdon TG (2010) Mater Sci Eng, A 527:6335

    Article  Google Scholar 

  28. Ko YG, Shin DH, Park KT, Lee CS (2006) Scr Mater 54:1785

    Article  CAS  Google Scholar 

  29. Yapici GG, Karaman I, Maier HJ (2006) Mater Sci Eng, A 434:294

    Article  Google Scholar 

  30. Stolyarov VV, Zeipper L, Mingler B, Zehetbauer M (2008) Mater Sci Eng, A 476:98

    Article  Google Scholar 

  31. Kang D-H, Kim T-W (2010) Mater Des 31:S54

    Article  CAS  Google Scholar 

  32. Purcek G, Yapici GG, Karaman I, Maier HJ (2011) Mater Sci Eng, A 528:2303

    Article  Google Scholar 

  33. Zhang Y, Figueiredo RB, Alhajeri SN, Wang JT, Gao N, Langdon TG (2011) Mater Sci Eng, A 528:7708

    Article  CAS  Google Scholar 

  34. Sordi VL, Ferrante M, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7870

    Article  CAS  Google Scholar 

  35. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) Nanostruct Mater 11:947

    Article  CAS  Google Scholar 

  36. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Scr Mater 45:747

    Article  CAS  Google Scholar 

  37. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2001) Mater Sci Eng, A 299:59

    Article  Google Scholar 

  38. Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ (2001) Mater Sci Eng, A 303:82

    Article  Google Scholar 

  39. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2003) Mater Sci Eng, A 343:43

    Article  Google Scholar 

  40. Semenova IP, Valiev RZ, Yakushina EB, Salimgareeva GH, Lowe TC (2008) J Mater Sci 43:7354

    Article  CAS  Google Scholar 

  41. Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Mater Sci Eng, A 493:190

    Article  Google Scholar 

  42. Faghihi S, Li D, Szpunar JA (2010) Nanotechnol 21:485703

    Article  CAS  Google Scholar 

  43. Garbacz H, Gradzka-Dahlke M, Kurzydlowski KJ (2007) Wear 263:572

    Article  CAS  Google Scholar 

  44. Purcek G, Saray O, Kul O, Karaman I, Yapici GG, Haouaoui M, Maier HJ (2009) Mater Sci Eng, A 517:97

    Article  Google Scholar 

  45. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M (2007) Biomaterials 28:3887

    Article  CAS  Google Scholar 

  46. Bindu S, Sanosh KP, Smetana K, Balakrishnan A, Kim TN (2009) J Mater Sci Technol 25:556

    Article  CAS  Google Scholar 

  47. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT (2004) Scr Mater 51:225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the University of Southampton together with a scholarship from the China Scholarship Council (CTW). This work was also partially supported by the EPSRC under Grant No. EP/D00313X/1 and the National Science Foundation of the United States under Grant No. DMR-1160966 (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.T., Gao, N., Gee, M.G. et al. Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating. J Mater Sci 48, 4742–4748 (2013). https://doi.org/10.1007/s10853-012-7110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7110-y

Keywords

Navigation