Skip to main content
Log in

Influence of oxygen partial pressure on structural, electrical, and optical properties of Al-doped ZnO film prepared by the ion beam co-sputtering method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum doped zinc oxide (AZO) films were prepared at room temperature by ion beam co-sputtering system under various oxygen partial pressures. The structural, electrical, and optical properties of the films were studied by XRD, XPS, Hall measurement, and spectrometer. The AZO film with low resistivity, 7.8 × 10−4 Ω cm, and high transparency, ~80 %, was obtained at the optimum oxygen partial pressure of 1.3 × 10−4 Torr and the intense (002) diffraction peak was observed simultaneously. Different optical band gaps observed in the films prepared under various oxygen partial pressures are closely related to the carrier concentrations in the films. Three O1s components were applied to fit the XPS O1s spectra. They consist of adsorbed oxygen species, oxygen in O-Zn bonds surrounded by oxygen vacancies, and oxygen in the O-Zn bonds. Two components, Zn in Zn–O bonds and Zn with higher than +2 oxidation states, were used to fit Zn2p3/2 spectra. It was found that the increase of film’s resistivity which may result from the drops in the oxygen vacancy, Zn interstitial, carrier concentration, and grain size. No apparent transmission change of the film in the visible light region as a function of oxygen partial pressure was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim Yumin, Lee Woojin, Jung Dae-Ryong, Kim Jongmin, Nam Seunghoon, Kim Hoechang, Park Byungwoo (2010) Appl Phys Lett 96:171902

    Article  Google Scholar 

  2. Ding Jijun, Chen Haixia, Zhao Xinggang, Ma Shuyi (2010) J Phys Chem Solids 71:346

    Article  CAS  Google Scholar 

  3. Tanusevski Atanas, Georgieva Verka (2010) Appl Surf Sci 256:5056

    Article  CAS  Google Scholar 

  4. Li C, Furuta M, Matsuda T, Hiramatsu T, Furuta H, Hirao T (2009) Thin Solid Films 517:3265

    Article  CAS  Google Scholar 

  5. Horwat D, Billard A (2007) Thin Solid Films 515:5444

    Article  CAS  Google Scholar 

  6. Yang W, Liu Z, Peng DL, Zhang F, Huang H, Xie Y, Wua Z (2009) Appl Surf Sci 255:5669

    Article  CAS  Google Scholar 

  7. Agura Hideaki, Suzuki Akio, Matsushita Tatsuhiko, Aoki Takanori, Okuda Masahiro (2003) Thin Solid Films 445:263

    Article  CAS  Google Scholar 

  8. Dong Bin-Zhong, Fang Guo-Jia, Wang Jian-Feng, Guan Wen-Jie, Zhao Xing-Zhong (2007) J Appl Phys 101:033713

    Article  Google Scholar 

  9. Sagar Parmod, Kumar Manoj (2005) Thin Solid Films 489:94

    Article  CAS  Google Scholar 

  10. Studenikin SA (1998) J Appl Phys 84:2287

    Article  CAS  Google Scholar 

  11. Hsu JC, Lee CC (1998) Appl Opt 37:1171

    Article  CAS  Google Scholar 

  12. Lee Cheng-Chung, Hsu Jin-Cherng, Wong Daw-Heng (2000) Opt Quant Electron 32:327

    Article  CAS  Google Scholar 

  13. Chen YY, Hsu JC, Wang PW, Pai YW, Lin YH (2011) Appl Surf Sci 257:3446

    Article  CAS  Google Scholar 

  14. Chen Y-Y, Hsu J-C, Lee C-Y, Wang PW (2012) Vacuum. http://dx.doi.org/10.1016/j.vacuum.2012.02.054

  15. Liquiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Sol Energy Mater Sol Cells 90:1773

    Google Scholar 

  16. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983

    Article  CAS  Google Scholar 

  17. Kang JS, Kang HS, Pang SS, Shim ES, Lee SY (2003) Thin Solid Films 443:5

    Article  CAS  Google Scholar 

  18. Wang QP, Zhang DH, Xue ZY, Zhang XJ (2004) Opt Mater 26:23

    Article  Google Scholar 

  19. Patil AB, Patil KR, Pardeshi SK (2011) J Solid State Chem 184:3273

    Article  CAS  Google Scholar 

  20. Wei XQ, Man BY, Liu M, Xue CS, Zhuang HZ, Yang C (2007) Physica B388:145

    Google Scholar 

  21. Sahdan MZ, Mamat MH, Salina M, Khusaimi Z, Noor UM, Rusop M (2010) Phys Status Solidi C7:2286

    Google Scholar 

  22. Kong H, Yang P, Chu J (2011) J Phys, Conference Series 276:012170

    Google Scholar 

  23. Huheey JE (1983) Inorganic chemistry, 3rd edn. Harper Collins Publishers, New York, p 73

  24. Zeng HB, Duan GT, Li Y, Yang SK, Xu XX, Cai WP (2010) Adv Funct Mater 20:561

    Article  CAS  Google Scholar 

  25. Xu PS, Sun YM, Shi CS, Xu FQ, Pan HB (2003) Nucl Instrum Meth Phys Res B199:286

    Google Scholar 

  26. Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552

    Article  CAS  Google Scholar 

  27. Wagner CD, Riggs WMW, Davis LE, Moulder JF, Mullenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., Eden Prairie, p 188

    Google Scholar 

  28. Lee S, Bang S, Park J, Jeong W, Jeon H (2010) Phys Status Solidi 207:1845

    Article  CAS  Google Scholar 

  29. Major S (1986) Appl Phys Lett 49:394

    Article  CAS  Google Scholar 

  30. Nurul Islam Md, Ghosh TB, Chopra KL, Acharya HN (1996) Thin Solid Films 280:20

  31. Sanjines R, Coluzza C, Rosenfeld D, Gozzo F, Almeras Ph, Levy F, Margaritondo G (1993) J Appl Phys 73:3997

    Article  CAS  Google Scholar 

  32. Li LJ, Deng H, Dai LP, Chen JJ, Yuan QL, Li Y (2008) Mat Res Bull 43:1456

    Article  CAS  Google Scholar 

  33. Kim DK, Kim HB (2011) J Alloy Comp 509:421

    Article  CAS  Google Scholar 

  34. Wang ZG, Zu XT, Wang LM (2006) Physica E35:199

    Article  Google Scholar 

  35. Fan JCC, Goodenough JB (1977) J Appl Phys 48:3524

    Article  CAS  Google Scholar 

  36. Zhang PF, Liu XL, Wei HY, Fan HB, Liang ZM, Jin P, Yang SY, Jiao CM, Zhu QS, Wang ZG (2007) J Phys D Appl Phys 40:6010

    Article  CAS  Google Scholar 

  37. Avalle L, Santos E, Leiva E, Macagno VA (1993) Thin Solid Films 219:133

    Google Scholar 

  38. Meng LJ, Moreira de Sa CP, dos Santos MP (1994) Appl Surf Sci 78:57

    Article  CAS  Google Scholar 

  39. Coppa BJ, Davis RF, Nemanish R (2003) Appl Phys Lett 82:400

    Article  CAS  Google Scholar 

  40. Cebulla R, Werndt R, Ellmer K (1998) J Appl Phys 83:1087

    Article  CAS  Google Scholar 

  41. Szorenyi T (1995) J Appl Phys 78:6211

    Article  CAS  Google Scholar 

  42. Rao LK, Vinni V (1993) Appl Phys Lett 63:608

    Article  CAS  Google Scholar 

  43. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) Appl Surf Sci 158:134

    Article  CAS  Google Scholar 

  44. Chen M, Pei ZL, Sun C, Wen LS, Wang X (2001) Mat Lett 48:194

    Article  CAS  Google Scholar 

  45. Shi S, Xu J, Zhang X, Li Lan (2011) J Appl Phys 109:103508

    Article  Google Scholar 

  46. Kim KH, Park KC, Ma DY (1997) J Appl Phys 81:7764

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sapintia Culture and Education Foundation, and the National Science Council of Taiwan (grant no. NSC99-2221-E-030-011-MY3) for financially supporting this study. P. W. Wang appreciates the funding from Bradley University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YY., Hsu, JC., Lee, CY. et al. Influence of oxygen partial pressure on structural, electrical, and optical properties of Al-doped ZnO film prepared by the ion beam co-sputtering method. J Mater Sci 48, 1225–1230 (2013). https://doi.org/10.1007/s10853-012-6863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6863-7

Keywords

Navigation