Skip to main content
Log in

Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Relatively few studies have been performed on the equilibrium moisture content (EMC) of wood under conditions of elevated temperature and pressure. Eight studies indicated that EMC near saturation decreased between 100 and 150 °C, whilst five studies indicated that EMC increased. The aim of this study was to identify the likely source of the disagreement using radiata pine (Pinus radiata D. Don) sapwood which was conditioned to a moisture content of around 3 % and then exposed for 1 h at 150 °C and relative humidities of either 50, 70 or 90 %. Mean values of EMC, obtained through in situ gravimetric analyses, were 5.7, 7.6 and 12.6 % with 95 % confidence intervals of the order of 1 %. In two further experiments, the humidity was allowed to rise briefly above 90 % and the moisture content after 1 h was found to be >30 % as in the five studies that indicated EMC increased above 100 °C. The high moisture contents were attributed to condensation of liquid water on the specimen with subsequent evaporation at a rate that was too slow for the moisture content to reach equilibrium before it was measured. Reliable EMC data at elevated temperatures require (1) tight process control of experimental conditions with minimal standard error, (2) specimens with low initial moisture content to avoid unwanted wood mass loss over time, (3) a relative humidity upper limit that avoids drift above 95 %, and (4) extrapolation of data to humidity approaching 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simpson WT, Tenwolde A (1999) Forest products wood handbook: wood as an engineering material. USDA Forest Products Laboratory, USDA Forest Service, Madison, p 489

    Google Scholar 

  2. Hunter AJ, Tamasy-Bano M (2002) Wood Sci Technol 36:435

    Article  CAS  Google Scholar 

  3. Eisenmann E (1950) Holz Zentralblatt 47:503

    Google Scholar 

  4. Kröll K (1951) Holz als Roh-und Werkstoff 9(6):216

    Article  Google Scholar 

  5. Kauman WG (1956) Forest Prod J 6:328

    Google Scholar 

  6. Noack D (1959) Holz als Roh-und Werkstoff 17:205

    Article  CAS  Google Scholar 

  7. Strickler MD (1968) Forest Prod J 18:69

    Google Scholar 

  8. Kollmann FFP, Côté WA (1968) Principles of wood science and technology. I: Solid wood. Springer, Berlin, p 592

    Book  Google Scholar 

  9. Engelhardt F (1979) Holz als Roh-und Werkstoff 37:99

    Article  CAS  Google Scholar 

  10. Resch H, Hoag ML, Rosen HN (1988) Forest Prod J 38:13

    Google Scholar 

  11. Shubin GS (1990) Doctoral Thesis. Lesnaia Promyshlennost Moskva, Moscow, p 154

    Google Scholar 

  12. Lee W, Abe H, Kuroda N (1998) Mokchae Konghak 26:1

    Google Scholar 

  13. Lenth CL, Kamke FA (2001) Wood Fiber Sci 33:104

    CAS  Google Scholar 

  14. Kubojima Y, Suzuki Y, Tonosaki M, Ishikawa A (2003) Holzforschung 57:634

    Article  CAS  Google Scholar 

  15. Yamamoto T (1998) Available from Tabai Espec Corp, 3-5-6, Tenjinbashi, Kita-ku, Osaka, Japan. ESPEC Technology Report No. 5(1): 11. Anon (ed)

  16. Ishikawa A, Kuroda N, Kato A (2004) J Wood Sci 50:7

    Article  Google Scholar 

  17. Dinwoodie JM (2000) Timber: its nature and behaviour, 2nd edn. E & FN Spon, London, p 257

    Book  Google Scholar 

  18. Keey RB, Langrish TAG, Walker JCF (1999) In: Timell TE (ed) Kiln-drying of lumber. Springer, Berlin, p 326

    Google Scholar 

  19. Anon (1999) Standard guide for moisture conditioning of wood and wood based materials. American Society for Testing and Materials, D4933-99

  20. Pearson H (2010) Material properties and stress modelling of radiata pine at high temperature. Doctoral Thesis, University of Waikato, Hamilton, p 481

  21. Hill C (2006) In: Stevens CV (ed) Wood modification: chemical, thermal and other processes. Wiley, West Sussex, p 239

    Chapter  Google Scholar 

  22. Pearson H, Gabbitas B, Ormarsson S (2012) Holzforschung 66:659

    Google Scholar 

  23. Kininmonth JA, Whitehouse LJ (1991) New Zealand radiata pine. Vol. I: wood properties. New Zealand Forest Research Institute, Rotorua, p 232

    Google Scholar 

  24. Pearson H (2004) A dew point sensor. Provisional patent 531044. New Zealand Forest Research Institute Limited, Rotorua, p 18

    Google Scholar 

  25. Gere JM, Timoshenko SP (2000) Mechanics of materials, 5th edn. Brooks Cole, Pacific Grove, p 928

    Google Scholar 

  26. Beall FC (1969) Wood Fiber Sci 1:215

    Google Scholar 

  27. Stamm AJ (1956) Ind Eng Chem 48:413

    Article  CAS  Google Scholar 

  28. Hunt DG, Gril J (1996) J Mater Sci Lett 15:80

    Article  CAS  Google Scholar 

  29. Pearson H, Gabbitas B, Ormarsson S (2011) Creep and mechanosorption of wood at high temperature. COST Action FP0904 workshop. Mechano-chemical transformations of wood during thermo-hydro-mechanical processing, Biel/Bienne, Switzerland, 16–18 February 2011

  30. Almeida G, Hernandez RE (2006) Wood Fiber Sci 38:74

    CAS  Google Scholar 

  31. Stamm AJ (1971) Wood Sci 4:114

    Google Scholar 

  32. Salin J (2010) The future of quality control for wood and wood products, COST Action E53, Edinburgh, Scotland, UK, 4–7 May 2010

  33. Engelund ET, Thygesen LG, Hoffmeyer P (2010) Holzforschung 64:325

    Article  CAS  Google Scholar 

  34. Hoffmeyer P, Engelund ET, Thygesen LG (2011) Holzforschung 65:875

    Article  CAS  Google Scholar 

  35. Cloutier A, Fortin Y (1991) Wood Sci Technol 25:263

    Article  CAS  Google Scholar 

  36. Kelsey KE (1957) Austral J App Sci 8:42

    CAS  Google Scholar 

  37. Hailwood AJ, Horrobin S (1946) Trans Faraday Soc 42B:84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the New Zealand government for research funding and acknowledge all those at Scion who assisted during the course of this study especially Dr Bernard Dawson and Dr Roger Newman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamish Pearson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, H., Gabbitas, B. & Ormarsson, S. Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges. J Mater Sci 48, 332–341 (2013). https://doi.org/10.1007/s10853-012-6750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6750-2

Keywords

Navigation