Skip to main content
Log in

The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

28 April 2021 Editor's Note: Readers are alerted that the reliability of data presented in Figure 5 in this article is currently in question. Appropriate editorial action will be taken once this matter is resolved.

A Correction to this article was published on 28 July 2021

This article has been updated

Abstract

In this study, two groups of carbon supported PtPd samples with different percentages of metals were prepared to examine the effects of Pd and stabilizing agents on the catalytic activity towards methanol and ethanol oxidation reactions. As a stabilizing agent, 1-hexanethiol and 1,1-dimethyl hexanethiol were used for group “a” and “b” catalysts, respectively. Cyclic voltammetry, chronoamperometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to understand the nature of the prepared catalysts. TEM and XRD results indicated a similar size distribution of the metal nanoparticles with a narrow average crystallite size of 3.0–3.7 nm. XPS data revealed the presence of two different oxidation states for both platinum and palladium, being Pt(0), Pt(IV), Pd(0), and Pd(II). Electrochemical studies indicated that the group “b” type catalysts have a higher catalytic activity than group “a”. The most active catalyst was found to be a carbon supported 88 %Pt/12 %Pd prepared with 1,1-dimethyl hexanethiol, which has an activity of ~5 times (~0.450 A/mg Pt at 0.57 V for methanol) and ~14 times (~0.350 A/g Pt at 0.56 V for ethanol) greater than the commercial E-TEK catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 28 April 2021

    Editor's Note: Readers are alerted that the reliability of data presented in Figure 5 in this article is currently in question. Appropriate editorial action will be taken once this matter is resolved.

  • 28 July 2021

    A Correction to this paper has been published: https://doi.org/10.1007/s10853-021-06352-9

References

  1. Carrette L, Friedrich KA, Stimming U (2000) ChemPhysChem 1:162

    Article  CAS  Google Scholar 

  2. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14

    Article  CAS  Google Scholar 

  3. Zhou WJ, Zhou BW, Li Z, Zhou ZH et al (2004) J Power Sources 126:16

    Article  CAS  Google Scholar 

  4. Singh S, Datta J (2010) J Mater Sci 45:3030. doi:10.1007/s10853-010-4307-9

    Article  CAS  Google Scholar 

  5. Sen F, Sen S, Gokagac G (2011) Phys Chem Chem Phys 13:1676

    Article  CAS  Google Scholar 

  6. Acres GJK (2001) J Power Sources 100:60

    Article  CAS  Google Scholar 

  7. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C et al (2002) J Power Sources 105:283

    Article  CAS  Google Scholar 

  8. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622

    Article  CAS  Google Scholar 

  9. Antolini E (2007) J Power Sources 170:1

    Article  CAS  Google Scholar 

  10. Switzer EE, Olsona TS, Datye AK, Atanassov P et al (2009) Electrochim Acta 54:989

    Article  CAS  Google Scholar 

  11. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM (2004) J Electrochim Acta 49:3901

    Article  CAS  Google Scholar 

  12. Tong YY, Zelakiewicz BS, Dy BM, Pogozelski AR (2005) Chem Phys Lett 406:137

    Article  CAS  Google Scholar 

  13. Isaacs SR, Choo H, Ko WB, Shon YS (2006) Chem Mater 18:107

    Article  CAS  Google Scholar 

  14. Tu W, Takai K, Fukui K, Miyazaki A, Enoki T (2003) J Phys Chem B 107:10134

    Article  CAS  Google Scholar 

  15. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  16. Baglio V, Stassi A, Di Blassi A, Urso CD, Arico AS (2007) Electrochim Acta 53:1360

    Article  CAS  Google Scholar 

  17. Sen F, Gokagac G (2008) Energy Fuels 22:1858

    Article  CAS  Google Scholar 

  18. Spinace EV, Neto AO, Linardi M (2004) J Power Sources 129:121

    Article  CAS  Google Scholar 

  19. Lemos SG, Oliveira RTS, Santos MC, Nascente PAP, Bulhoes LOS et al (2007) J Power Sources 163:695

    Article  CAS  Google Scholar 

  20. Han DM, Guo ZP, Zeng R, Kim CJ, Meng YZ, Liu HK (2009) Int J Hydrogen Energy 34:2426

    Article  CAS  Google Scholar 

  21. Koch DFA, Rand DAG, Woods R (1976) J Electroanal Chem 70:73

    Article  CAS  Google Scholar 

  22. Ordonez LC, Roquero P, Sebastian PJ, Ramirez J (2007) Int J Hydrogen Energy 32:3147

    Article  CAS  Google Scholar 

  23. Corbierre MK, Lennox RB (2005) Chem Mater 17:5691

    Article  CAS  Google Scholar 

  24. Yee CK, Jordan R, Ulman A, White H et al (1999) Langmuir 15:3486

    Article  CAS  Google Scholar 

  25. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 7:801

    Article  Google Scholar 

  26. Sen F, Gokagac G (2007) J Phys Chem C 111:1467

    Google Scholar 

  27. Sen F, Gokagac G (2007) J Phys Chem C 111:5715

    Google Scholar 

  28. Zhou W, Zhou Z, Song S, Li W, Sun G et al (2003) Appl Catal B 46:273

    Article  CAS  Google Scholar 

  29. Li H, Sun G, Li N, Sun S, Su D, Xin Q (2007) J Phys Chem C 111:5605

    Google Scholar 

  30. Powder Diffraction File—Inorganic Compounds (Card 04-802) (1984) JCPDS International Centre for Diffraction Data, Philadelphia

  31. Powder Diffraction File—Inorganic Compounds (Card 46-1043) (1997) JCPDS International Centre for Diffraction Data, Pennsylvania

  32. Radmilovic V, Gasteiger HA, Ross PN (1995) J Catal 154:98

    Article  CAS  Google Scholar 

  33. Angelucci CA, D’Villa Silva M, Nart FC (2007) Electrochim Acta 52:7293

    Article  CAS  Google Scholar 

  34. Renouprez AJ, Malhomme A, Massardier J, Cattenot M, Bergeret G (2000) Stud Surf Sci Catal 130:2579

    Article  Google Scholar 

  35. Morfin F, Sabroux JC, Renouprez AJ (2004) Appl Catal B 47:47

    Article  CAS  Google Scholar 

  36. Klug H, Alexander L (eds) (1962) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  37. Kadirgan F, Beyhan S, Atilan T (2009) Int J Hydrogen Energy 34:4312

    Article  CAS  Google Scholar 

  38. Allen GC, Tucker PM, Capon A, Parsons P (1974) J Electroanal Chem 50(50):335

    Article  CAS  Google Scholar 

  39. Kennedy BJ, Hammett A (1990) J Electroanal Chem 283:271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Türkiye Bilimsel ve Teknik Araştırma Kurumu (TUBITAK), Grant 108T065 for the financial support. F. Şen and S. Şen thank the Middle East Technical University (METU) for Grant BAP-08-11-DPT2002K120510 and TUBITAK 2211 scholarships. The authors also thank Dr. W. Michael Pitcher for the proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatih Sen or Gulsun Gokagac.

Additional information

Zafer Ozturk and Fatih Sen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, Z., Sen, F., Sen, S. et al. The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J Mater Sci 47, 8134–8144 (2012). https://doi.org/10.1007/s10853-012-6709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6709-3

Keywords

Navigation