Skip to main content
Log in

Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystalline metal oxides display a large number of physical functionalities such as ferroelectricity, magnetism, superconductivity, and Mott transitions. High quality heterostructures involving metal oxides and workhorse semiconductors such as silicon have the potential to open new directions in electronic device design that harness these degrees of freedom for computation or information storage. This review describes how first-principles theoretical modeling has informed current understanding of the growth mechanisms and resulting interfacial structures of crystalline, coherent, and epitaxial metal oxide thin films on semiconductors. Two overarching themes in this general area are addressed. First, the initial steps of oxide growth involve careful preparation of the semiconductor surface to guard against amorphous oxide formation and to create an ordered template for epitaxy. The methods by which this is achieved are reviewed, and possibilities for improving present processes to enable the epitaxial growth of a wider set of oxides are discussed. Second, once a heterointerface is created, the precise interfacial chemical composition and atomic structure is difficult to determine unambiguously from experiment or theory alone. The current understanding of the structure and properties of complex oxide/semiconductor heterostructures is reviewed, and the main challenges to prediction—namely, (i) are these heterostructures in thermodynamic equilibrium or kinetically trapped, and (ii) how do the interfaces modify or couple to the degrees of freedom in the oxide?—are explored in detail for two metal oxide thin films on silicon. Finally, an outlook of where theoretical efforts in this field may be headed in the near future is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Turley J (2002) The two percent solution. Electronic Engineering Times, Dec 18 2002. http://www.eetimes.com/discussion/other/4024488/The-Two-Percent-Solution

  2. Wilk GD, Wallace RM, Anthony JM (2001) J Appl Phys 89(10):5243

    Article  CAS  Google Scholar 

  3. Moore G (1965) Electron Mag 38:4

    Google Scholar 

  4. Schaller RR (1997) IEEE Spectr 34:52

    Article  Google Scholar 

  5. McKee RA, Walker FJ, Chisholm MF (1998) Phys Rev Lett 81(14):3014

    Article  CAS  Google Scholar 

  6. Reiner JW, Kolpak AM, Segal Y, Garrity KF, Ismail-Beigi S, Ahn CH, Walker FJ (2010) Adv Mater 22:2919

    Article  CAS  Google Scholar 

  7. Kolpak A, Walker F, Reiner J, Segal Y, Su D, Sawicki M, Broadbridge C, Zhang Z, Zhu Y, Ahn C, Ismail-Beigi S (2010) Phys Rev Lett 105(21):217601

    Article  CAS  Google Scholar 

  8. Wolfram T, Ellialtioglu S (2006) Electronic and optical properties of d-band perovskites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Looney DH (1957) U.S. Patent 2,791,758

  10. Brown WL (1957) U.S. Patent 2,791,759

  11. Morton JA (1957) U.S. Patent 2,791,761

  12. Ross IM (1957) U.S. Patent 2,791,760

  13. McKee RA, Walker FJ, Nardelli MB, Shelton WA, Stocks GM (2003) Science 300(5626):1726

    Article  CAS  Google Scholar 

  14. Lettieri J, Haeni JH, Schlom DG (2002) J Vac Sci Technol A 20(4):1332

    Article  CAS  Google Scholar 

  15. Reiner JW, Garrity KF, Walker FJ, Ismail-Beigi S, Ahn CH (2008) Phys Rev Lett 101:105503

    Article  CAS  Google Scholar 

  16. Ashman CR, Först CJ, Schwarz K, Blöchl PE (2004) Phys Rev B 69(7):075309

    Article  Google Scholar 

  17. Garrity K, Ismail-Beigi S (2009) Phys Rev B 80:085306

    Article  Google Scholar 

  18. Fan WC, Wu NJ, Ignatiev A (1990) Phys Rev B 42(2):1254

    Article  CAS  Google Scholar 

  19. Kazzi ME, Delhaye G, Merckling C, Bergignat E, Robach Y, Grenet G, Hollinger G (2007) J. Vac. Sci. Tech A 25(6):1505

    Article  Google Scholar 

  20. Garrity KF (2011) Yale Doctoral Thesis

  21. Schaadt DM, Yu ET, Vaithyanathan V, Schlom DG (2004) J Vac Sci Technol B 22:2030

    Article  CAS  Google Scholar 

  22. Li H, Hu X, Wei Y, Yu Z, Zhang X, Droopad R, Demkov AA, Edwards J, Moore K, Ooms W, Kulik J, Fejes P (2003) J Appl Phys 93:4521

    Article  CAS  Google Scholar 

  23. Shutthanandan V, Thevuthasan S, Liang Y, Adams EM, Yu Z, Droopad R (2002) Appl Phys Lett 80:1803

    Article  CAS  Google Scholar 

  24. Bakhtizin RZ, Kishimoto J, Hashizume T, Sakurai T (1996) J Vac Sci Technol B 14(2):1000

    Article  CAS  Google Scholar 

  25. Du W, Wang B, Xu L, Hu Z, Cui X, Pan BC, Yang J, Hou JG (2008) J Phys Chem A 129:164707

    Google Scholar 

  26. He J, Zhang G, Guo J, Guo Q, Wu K (2011) J Appl Phys 109(8):083522

  27. Liang Y, Gan S, Wei Y, Gregory R (2006) Phys Status Solidi B 243:2098

    Article  CAS  Google Scholar 

  28. Reiner JW, Segal Y, Garrity KF, Hong H, Ismail-Beigi S, Ahn CH, Walker FJ (2009) J Vac Sci Technol B 27(4):2015

    Article  CAS  Google Scholar 

  29. Garrity KF, Padmore MR, Segal Y, Reiner J, Walker F, Ahn C, Ismail-Beigi S (2010) Surf Sci Rep 604(9-10):857

    CAS  Google Scholar 

  30. Alerhand OL, Berker AN, Joannopoulos JD, Vanderbilt D, Hamers RJ, Demuth JE (1990) Phys Rev Lett 64:2406

    Google Scholar 

  31. Wang J, Hallmark JA, Marshall DS, Ooms WJ, Ordejón P, Junquera J, Sánchez-Portal D, Artacho E, Soler JM (1999) Phys Rev B 60:4968

    Google Scholar 

  32. Zhang X, Demkov A (2008) J Appl Phys 103:103710

    Article  Google Scholar 

  33. Smith A, Jonsson H (1996) Phys Rev Lett 77:2518

    Article  Google Scholar 

  34. Borovsky B, Krueger M, Ganz E (1997) Phys Rev Lett 78:4229

    Article  CAS  Google Scholar 

  35. Jonsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 385

  36. Henkelman G, Uberuaga BP, Jonsson H (2000) J Phys Chem 113(22):9901

    Google Scholar 

  37. Ramstad A, Brocks G, Kelly PJ (1995) Phys Rev B 51:14504

    Article  CAS  Google Scholar 

  38. Robertson J (2006) Rep Prog Phys 69(2):327

    Article  CAS  Google Scholar 

  39. Edge L, Schlom D, Chambers S, Cicerrella E, Freeouf J, Hollander B, Schubert J (2004) Appl Phys Lett 84(5):726

    Article  CAS  Google Scholar 

  40. International Technology Roadmap for Semiconductors (2007) http://www.itrs.net

  41. Klenov DO, Schlom DG, Li H, Stemmer S (2005) Jpn J Appl Phys 44(20):L617

    Article  CAS  Google Scholar 

  42. Först CJ, Schwarz K, Blöchl PE (2005) Phys Rev Lett 95(13):137602

    Article  Google Scholar 

  43. Xiang W, Lu H, Chen Z, Lu X, He M, Tian H, Zhou Y, Li C, Ma X (2004) J Cryst Growth 271(1–2):165

    Article  CAS  Google Scholar 

  44. Reiner JW, Posadas A, Wang M, Sidorov M, Krivokapic Z, Walker FJ, Ma TP, Ahn CH (2009) J Appl Phys 105(12):124501

    Article  Google Scholar 

  45. Merckling C, Delhaye G, El-Kazzi M, Gaillard S, Rozier Y, Rapenne L, Chenevier B, Marty O, Saint-Girons G, Gendry M, Robach Y, Hollinger G (2007) Microelectronics reliability 47(4–5):540. 14th Workshop on Dielectrics in Microelectronics (WoDiM 2006)

  46. Mi YY, Yu Z, Wang SJ, Lim PC, Foo YL, Huan ACH, Ong CK (2007) Appl Phys Lett 90(18):181925

    Article  Google Scholar 

  47. Ashman CR, Först CJ, Schwarz K, Blöchl PE (2004) Phys Rev B 70:155330

    Article  Google Scholar 

  48. Devos I, Boulenc P (2007) Appl Phys Lett 90:072906

    Article  Google Scholar 

  49. Zhu C, Misawa S, Tsukahara S, Kawazu A, Pang S (1999) Appl Phys A 68:145

    Article  CAS  Google Scholar 

  50. Zhu C, Misawa S, Tsukahara S (1996) J Appl Phys 80:4205

    Article  CAS  Google Scholar 

  51. Seo J, Park J, Jung S, Yoo KH, Whang C, Kim S, Choi D, Chae K (2006) Chem Phys Lett 417:72

    Article  CAS  Google Scholar 

  52. Zhu C, Kawazu A, Misawa S, Tsukahara S (1999) Phys Rev B 59:9760

    Article  CAS  Google Scholar 

  53. Knizhnik AA, Iskandarova IM, Bagaturyants AA, Potapkin BV, Fonseca LRC, Korkin A (2005) Phys Rev B 72:235329

    Article  Google Scholar 

  54. Brocks G, Kelly PJ, Car R (1993) Phys Rev Lett 70:2786

    Article  CAS  Google Scholar 

  55. Umeno Y, Kitamura T (2004) Modell Simul Mater Sci Eng 12:1147

    Article  CAS  Google Scholar 

  56. Brocks G, Kelly PJ, Car R (1994) J Vac Sci Technol B 12:2705

    Article  CAS  Google Scholar 

  57. McKee RA, Walker FJ, Nardelli MB, Shelton WA, Stocks GM (2003) Science 300:1726

    Article  CAS  Google Scholar 

  58. Mi SB, Jia CL, Vaithyanathan V, Houben L, Schubert J, Schlom DG, Urban K (2008) Appl Phys Lett 93:101913

    Article  Google Scholar 

  59. Kourkoutis LF, Hellberg CS, Vaithyanathan V, Li H, Parker MK, Andersen KE, Schlom DG, Muller DA (2008) Phys Rev Lett 100:036101

    Article  Google Scholar 

  60. Warusawithana MP, Cen C, Sleasman CR, Woicik JC, Li Y, Kourkoutis LF, Klug JA, Li H, Ryan P, Wang LP, Bedzyk M, Muller DA, Chen LQ, Levy J, Schlom DG (2009) Science 324:367

    Article  CAS  Google Scholar 

  61. Kolpak A, Walker F, Reiner J, Segal Y, Su D, Sawicki M, Broadbridge C, Zhang Z, Zhu Y, Ahn C, Ismail-Beigi S (2010) Phys Rev Lett 105(21):217601

    Article  CAS  Google Scholar 

  62. Chambers SA (2009) Adv Mater 22:219

    Article  Google Scholar 

  63. Kumah DP, Reiner JW, Segal Y, Kolpak AM, Zhang Z, Su D, Zhu Y, Sawicki MS, Broadbridge CC, Ahn CH, Walker FJ (2010) Appl Phys Lett 97(21):251902

    Article  Google Scholar 

  64. McKee R, Walker F, Conner J, Specht E, Zelmon D (1991) Appl Phys Lett 59:782

    Article  CAS  Google Scholar 

  65. Rossel C, Mereu B, Marchiori C, Caimi D, Sousa M, Guiller A, Siegwart H, Germann R, Locquet JP, Fompeyrine J, Webb DJ, Dieker C, Seo JW (2006) Appl Phys Lett 89:053506

    Article  Google Scholar 

  66. Forst CJ, Ashman CR, Schwarz K, Blochl PE (2003) Nature 427:53

    Article  Google Scholar 

  67. Peacock PW, Robertson J (2003) Appl Phys Lett 83:5497

    Article  CAS  Google Scholar 

  68. Zhang X, Demkov AA, Li H, Hu X, Wei Y, Kulik J (2003) Phys Rev B 68:125323

    Article  Google Scholar 

  69. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Nature 430:758

    Article  CAS  Google Scholar 

  70. Woicik JC, Li H, Zschack P, Karapetrova E, Ryan P, Ashman CR, Hellberg CS (2006) Phys Rev B 73:024112

    Article  Google Scholar 

  71. Kholkin A, Bdikin I, Ostapchuk T, Petzelt J (2008) Appl Phys Lett 93:222905

    Article  Google Scholar 

  72. Leisegang T, Stocker H, Levin AA, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer DC (2009) Phys Rev Lett 102:087601

    Article  CAS  Google Scholar 

  73. Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A (2008) Appl Phys Lett 92:092118

    Article  Google Scholar 

  74. Segal Y, Reiner JW, Kolpak AM, Zhang Z, Ismail-Beigi S, Ahn CH, Walker FJ (2009) Phys Rev Lett 102(11):116101

    Article  CAS  Google Scholar 

  75. Kolpak AM, Ismail-Beigi S (2011) Phys Rev B 83:165318

    Article  Google Scholar 

  76. Kolpak AM, Ismail-Beigi S (2012) Phys Rev B (in press)

  77. Yakovkin IN, Gutowski M (2004) Phys Rev B 70:165319

    Article  Google Scholar 

  78. Demkov AA, Fonseca LRC, Verret E, Tomfohr J, Sankey OF (2005) Phys Rev B 71:195306

    Article  Google Scholar 

  79. Robertson J (2006) Rep Prog Phys 69:327

    Article  CAS  Google Scholar 

  80. Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103

    Article  Google Scholar 

  81. Chambers SA, Liang Y, Yu Z, Droopad R, Ramdani J, Eisenbeiser K (2000) Appl Phys Lett 77:1662

    Article  CAS  Google Scholar 

  82. Amy F, Wan AS, Kahn A, Walker FJ, McKee RA (2004) J Appl Phys 96:1635

    Article  CAS  Google Scholar 

  83. Chambers SA, Liang Y, Yu Z, Droopad R, Ramdani J (2001) J Vac Sci Technol A 19:934

    Article  CAS  Google Scholar 

  84. Junquera J, Ghosez P (2003) Nature 422:506

    Article  CAS  Google Scholar 

  85. Reiner J, Walker F, McKee R, Billman C, Junquera J, Rabe K, Ahn C (2004) Phys Status Solidi B 241:2287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for extensive collaborative opportunities and numerous discussions with our colleagues including Charles Ahn, Eric Altman, Christine Broadbridge, Victor Henrich, Jason Hoffman, Jay Kerwin, Agham Posadas, James Reiner, Yaron Segal, John Tully, and Frederick Walker. This work was primarily supported by the NSF MRSEC program under Grant No. MRSEC DMR-1119826. Computational facilities were provided by the Yale University Faculty of Arts and Sciences High Performance Computing Center, by the National Science Foundation under Grant #CNS 08-21132 that partially funded acquisition of the facilities, as well as the NSF TeraGrid computer systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Ismail-Beigi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrity, K.F., Kolpak, A.M. & Ismail-Beigi, S. Growth and interfacial properties of epitaxial oxides on semiconductors: ab initio insights. J Mater Sci 47, 7417–7438 (2012). https://doi.org/10.1007/s10853-012-6425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6425-z

Keywords

Navigation