Skip to main content
Log in

Hot compressive deformation behavior of 7075 Al alloy under elevated temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hot compression tests were conducted with wide strain rates and forming temperature ranges to study the high-temperature deformation behavior of 7075 Al alloy. The material flow behavior and microstructural evolution during hot-forming process are discussed. Based on the measured stress–strain data, a new constitutive model is proposed, considering the coupled effects of strain, strain rate, and forming temperature on the material flow behavior of 7075 Al alloy. In the proposed model, the material constants are presented as functions of forming temperature. The proposed constitutive model gives good correlations with the experimental results, which confirms that the proposed model can give an accurate and precise estimate of flow stress for 7075 Al alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wilshire B, Scharning PJ (2008) J Mater Sci 43:3992. doi:10.1007/s10853-007-2433-910

    Article  CAS  Google Scholar 

  2. Rajamuthamilselvan M, Ramanathan S (2011) J Alloys Compd 509:948

    Article  CAS  Google Scholar 

  3. Choudhury P, Das S (2005) J Mater Sci 40:805. doi:10.1007/s10853-005-6329-2

    Article  CAS  Google Scholar 

  4. Hausöl T, Höppel HW, Göken M (2010) J Mater Sci 45:4733. doi:10.1007/s10853-010-4678-y

    Article  Google Scholar 

  5. Lin YC, Chen MS, Zhong J (2008) Mater Lett 62:2132

    Article  Google Scholar 

  6. Lin YC, Chen MS (2009) J Mater Process Technol 209:4578

    Article  CAS  Google Scholar 

  7. Lin YC, Chen MS, Zhong J (2009) J Mater Process Technol 209:2477

    Article  CAS  Google Scholar 

  8. Lin YC, Chen MS (2009) J Mater Sci 44:835. doi:10.1007/s10853-008-3120-1

    Article  CAS  Google Scholar 

  9. Topic I, Höppel HW, Göken M (2008) J Mater Sci 43:7320. doi:10.1007/s10853-008-2754-3

    Article  CAS  Google Scholar 

  10. Haas MD, Hosson JTMD (2002) J Mater Sci 37:5065. doi:10.1023/A:1021095801205

    Article  Google Scholar 

  11. Lin YC, Chen XM (2011) Mater Des 32:1733

    Article  CAS  Google Scholar 

  12. Lin YC, Chen MS, Zhong J (2008) Comput Mater Sci 42:470

    Article  CAS  Google Scholar 

  13. Mandal S, Rakesh V, Sivaprasad PV, Venugopal S, Kasiviswanathan KV (2009) Mater Sci Eng A 500:114

    Article  Google Scholar 

  14. Samantaray D, Mandal S, Bhaduri AK (2010) Mater Des 31:981

    Article  CAS  Google Scholar 

  15. Lin YC, Xia YC, Chen XM, Chen MS (2010) Comput Mater Sci 50:227

    Article  CAS  Google Scholar 

  16. Ji GL, Li FG, Li QH, Li HQ, Li Z (2011) Mater Sci Eng A 528:4774

    Article  Google Scholar 

  17. Cai J, Li FG, Liu TY, Chen B, He M (2010) Mater Des 32:1144

    Article  Google Scholar 

  18. Li W, Li H, Wang Z, Zheng Z (2011) Mater Sci Eng A 528:4098

    Article  Google Scholar 

  19. Gan CL, Xue YD, Wang MJ (2011) Mater Sci Eng A 528:4199

    Article  Google Scholar 

  20. Castellanos J, Rieiro I, Carsí M, Muñoz J, Mehtedi MEl, Ruano OA (2009) Mater Sci Eng A 517:191

    Article  Google Scholar 

  21. Rieiro I, Gutiérrez V, Castellanos J, Carsí M, Larrea MT, Ruano OA (2010) Metall Mater Trans A 41:2396

    Article  Google Scholar 

  22. Castellanos J, Rieiro I, Carsí M, Ruano OA (2010) J Mater Sci 45:5522. doi:10.1007/s10853-010-4610-5

    Article  CAS  Google Scholar 

  23. Phaniraj C, Samantaray D, Mandal S, Bhaduri AK (2011) Mater Sci Eng A 528:6066

    Article  CAS  Google Scholar 

  24. Johnson GR, Cook WH (1985) Eng Fract Mech 21:31

    Article  Google Scholar 

  25. Samantaray D, Mandal S, Bhaduri AK (2009) Comput Mater Sci 47:568

    Article  CAS  Google Scholar 

  26. Samantaray D, Mandal S, Borah U, Bhaduri AK, Sivaprasad PV (2009) Mater Sci Eng A 526:1

    Article  Google Scholar 

  27. Lin YC, Chen XM, Liu G (2010) Mater Sci Eng A 527:6980

    Article  Google Scholar 

  28. Lin YC, Chen XM (2010) Comput Mater Sci 49:628

    Article  CAS  Google Scholar 

  29. Samantaray D, Mandal S, Bhaduri AK, Venugopal S, Sivaprasad PV (2011) Mater Sci Eng A 528:1937

    Article  Google Scholar 

  30. Zener C, Hollomon H (1944) J Appl Phys 15:22

    Article  Google Scholar 

  31. Li Q, Wang TS, Jing TF, Gao YW, Zhou JF, Yu JK, Li HB (2009) Mater Sci Eng A 515:38

    Article  Google Scholar 

  32. Quan GZ, Li GS, Chen T, Wang YX, Zhang YW, Zhou J (2011) Mater Sci Eng A 528:4643

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by 973 Program (Grant No. 2010CB731702), Program for New Century Excellent Talents in University (No. NCET-10-0838), Sheng-hua Yu-ying Program of Central South University, the Freedom Explore Program of Central South University (201011200125), and the Young Core Instructor from the Education Commission of Hunan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y.C., Li, LT., Fu, YX. et al. Hot compressive deformation behavior of 7075 Al alloy under elevated temperature. J Mater Sci 47, 1306–1318 (2012). https://doi.org/10.1007/s10853-011-5904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5904-y

Keywords

Navigation