Skip to main content
Log in

Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile approach is demonstrated for the preparation of hexagonal NiO porous nanoplates via surfactant self-assembly. These NiO nanoplates are produced via a singe-step process via thermal decomposition at high temperatures using a nickel salt and the surfactant cetyltrimethylammonium bromide. The NiO nanostructures are hexagonal in shape with diameters of 300 nm and thickness of 20 nm. The NiO nanoplates are found to exhibit a beneficial specific capacitive performance of 286.7 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  2. Conway BEJ (1991) Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  5. Miller JR, Simon P (2008) Science 321:651

    Article  CAS  Google Scholar 

  6. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon PJ (2008) Am Chem Soc 130:2730

    Article  CAS  Google Scholar 

  7. Raymundo-Pinero E, Leroux F, Beguin F (2006) Adv Mater 18:1877

    Article  CAS  Google Scholar 

  8. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nat Mater 2:591

    Article  CAS  Google Scholar 

  9. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Science 238:480

    Article  Google Scholar 

  10. Chen S, Zhu J, Wang X (2010) ACS Nano 4:6212

    Article  CAS  Google Scholar 

  11. Wang HL, Casalongue HS, Liang YY, Dai HJJ (2010) Am Chem Soc 132:7472

    Article  CAS  Google Scholar 

  12. Miller JR, Outlaw RA, Holloway BC (2010) Science 329:1637

    Article  CAS  Google Scholar 

  13. Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PTJ (2009) Am Chem Soc 131:671

    Article  CAS  Google Scholar 

  14. Chen PC, Shen G, Shi Y, Chen HT, Zhou CW (2010) ACS Nano 4:4403

    Article  CAS  Google Scholar 

  15. Yu CJ, Masarapu C, Rong JP, Wei BQ, Jiang HQ (2009) Adv Mater 21:4793

    Article  CAS  Google Scholar 

  16. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987

    Article  CAS  Google Scholar 

  17. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690

    Article  CAS  Google Scholar 

  18. Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Angew Chem 42:4092

    Article  CAS  Google Scholar 

  19. Liu HJ, Jin LH, He P, Wang CX, Xia YY (2009) Chem Comm 44:6813

    Article  Google Scholar 

  20. Reddy LM, Shaijumon MM, Gowda SR, Ajayan PMJ (2010) Phys Chem C 114:658

    Article  CAS  Google Scholar 

  21. Wei TY, Chen CC, Chien HC, Lu SY, Hu CC (2010) Adv Mater 22:347

    Article  CAS  Google Scholar 

  22. Prasad KR, Miura N (2004) Appl Phys Lett 85:4199

    Article  CAS  Google Scholar 

  23. Kim JH, Zhu K, Yan YF, Perkins CL, Frank AJ (2010) Nano Lett 10:4099

    Article  CAS  Google Scholar 

  24. Hu GX, Tang CH, Li CX, Li HM, Wang Y, Gong H (2011) J Electrochem Soc 158:A695

    Article  CAS  Google Scholar 

  25. Zhu JH, Jiang JA, Liu JP, Ding RM, Ding H, Feng YM, Wei GM, Huang XT (2011) J Solid State Chem 184:578

    Article  CAS  Google Scholar 

  26. Meher SK, Justin P, Rao GR (2010) Electrochem Acta 55:8388

    Article  CAS  Google Scholar 

  27. Liu XM, Zhang XG, Fu SY (2006) Mat Res Bull 41:620

    Article  CAS  Google Scholar 

  28. Sato H, Yamagishi A, Kawamura KJ (2001) Phys Chem B 105:7990

    Article  CAS  Google Scholar 

  29. Qi Y, Qi HY, Li JH, Lu CJJ (2008) Crys Growth 310:4221

    Article  CAS  Google Scholar 

  30. Wang HQ, Yang GF, Li QY, Zhong XX, Wang FP, Li ZS, Li YH (2001) New J Chem 35:469

    Article  Google Scholar 

  31. Hyun T-S, Tuller HL, Youn D-Y, Kim H-G, Kim I-D (2010) J Mat Chem 20:9172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 21050110115), International Joint Project from The Royal Society (No. JP090644), Hunan Province Foundation of Natural Science (10JJ6026), and China Postdoctoral Science Foundation funded project (20100471226) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobo Ji or Craig E. Banks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Ping, J., Huang, X. et al. Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. J Mater Sci 47, 503–507 (2012). https://doi.org/10.1007/s10853-011-5826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5826-8

Keywords

Navigation