Skip to main content
Log in

Hydrogen peroxide versus water synthesis of bioglass–nanocrystalline hydroxyapatite composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports a comparison of the structural and textural properties of bioglass–hydroxyapatite (HA) composites obtained in the SiO2–CaO–P2O5 system by sol–gel method, with different amounts of hydrogen peroxide (3% H2O2) or water (H2O). X-ray diffraction, Raman, and FT-IR spectroscopy reveal the presence of nanocrystalline HA. Scanning electron microscopy images illustrate that the HA phase is mainly distributed on the glass surface. The results point out that the sintering at 550 °C of a sol–gel derived SiO2–CaO–P2O5 bioglass leads to a single crystalline phase of HA, and validate a new processing method for obtaining bioglass–HA composites. Structural analyses of the investigated composites indicate the existence of a silicate network built up from Q3 and Q2 units. The replacement of water with hydrogen peroxide has as consequence the increase of depolymerization degree of silica network. Textural properties were investigated with N2-adsorption technique. The composites prepared with hydrogen peroxide exhibit a more uniform and narrow mesoporous distribution that recommends them for drug uptake and release applications. It was found that the specific surface area and pore volume are clearly influenced by the H2O2(H2O):TEOS molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL (2006) J Mater Sci Mater Med 17:967

    Article  CAS  Google Scholar 

  2. Hench LL, Jones JR, Sepulveda P (2002) In: Polak JM, Hench LL, Kemp P (eds) Bioactive materials for tissue engineering scaffolds. Imperial College Press, London

    Google Scholar 

  3. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  4. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 2:117

    Article  Google Scholar 

  5. Froum SJ, Weinberg MA, Tarnow D (1998) J Periodontol 69(6):698

    CAS  Google Scholar 

  6. Zhong JP, Greenspan DGJ (2000) Biomed Mater Res 53:694

    Article  CAS  Google Scholar 

  7. Tilocca A, Cormack AN (2010) Langmuir 26(1):545

    Article  CAS  Google Scholar 

  8. Hamadouche M, Meunier A, Greenspan DC, Blanchat C, Zhong JP, LaTorre GP (2001) J Biomed Mater Res 54:560

    Article  CAS  Google Scholar 

  9. Mami M, Lucas-Girot A, Oudadesse H, Srid RD, Mezahi F, Dietrich E (2008) Appl Surf Sci 254:7386

    Article  CAS  Google Scholar 

  10. Li N, Je Q, Zhu S, Wang R (2005) Ceram Int 31:641

    Article  CAS  Google Scholar 

  11. Diaz A, Lopez T, Manjarrez J, Basaldella E, Martinez-Blanes JM, Odriozola JA (2006) Acta Biomater 2:173

    Article  CAS  Google Scholar 

  12. Yunos DM, Bretcanu O, Boccaccini AR (2008) J Mater Sci 43:4433. doi:10.1007/s10853-008-2552-y

    Article  Google Scholar 

  13. Novak S, Druce J, Chen QZ, Boccaccini AR (2009) J Mater Sci 44:1442. doi:10.1007/s10853-008-2858-9

    Article  CAS  Google Scholar 

  14. Balamurugan A, Sockalingum G, Michel J, Faure J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Mater Lett 60:3752

    Article  CAS  Google Scholar 

  15. Lei B, Chen X, Wang Y, Zhao N, Du C, Fang L (2009) J Non-Cryst Solids 355:2678

    Article  CAS  Google Scholar 

  16. Downs RT (2006) Database for minerals. http://rruff.info. Accessed 12 Oct 2010

  17. Jones JR, Ehrenfried LM, Hench LL (2006) Biomaterials 27:964

    Article  CAS  Google Scholar 

  18. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders & porous solids. Academic Press, San Diego

    Google Scholar 

  19. Chrissanthopoulos A, Bouropoulos AN, Yannopoulos SN (2008) Vib Spectrosc 48:118

    Article  CAS  Google Scholar 

  20. Domine F, Piriou B (1983) J Non-Cryst Solids 55:125

    Article  CAS  Google Scholar 

  21. Pryce RS, Hench LL (2004) J Mater Chem 14:2303

    Article  CAS  Google Scholar 

  22. Stolen RH, Walnfen GE (1976) J Chem Phys 64:2623

    Article  CAS  Google Scholar 

  23. Pereira MM, Clark AE, Hench LL (1995) J Am Ceram Soc 78(9):2463

    Article  CAS  Google Scholar 

  24. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) J Biomed Mater Res 52:601

    Article  CAS  Google Scholar 

  25. Smith B (1999) Infrared spectra interpretation: a systematic approach. CRC Press, Boca Raton

    Google Scholar 

  26. Agathopoulosa S, Tulyaganova DU, Venturaa JMG, Kannana S, Karakassidesc MA, Ferreiraa JMF (2006) Biomaterials 27:1832

    Article  Google Scholar 

  27. Furukawa T, White WB (1980) J Non-Cryst Solids 38(39):87

    Article  Google Scholar 

  28. Lasaga AC (1982) Phys Chem Miner 8:36

    Article  CAS  Google Scholar 

  29. de Aza PN, Guitian F, Santos C, de Aza S, Cusco R, Artus L (1997) Chem Mater 9:916

    Article  Google Scholar 

  30. Ravarian R, Moztarzadeh F, Solati HM, Rabiee SM, Khoshakhlagh P, Tahriri M (2010) Ceram Int 36:291

    Article  CAS  Google Scholar 

  31. Krawiec P (2006) Nanostructured porous high surface area ceramics for catalytic applications. PhD Thesis, Dresden

  32. Colomer MT (2006) Adv Mater 18:371

    Article  CAS  Google Scholar 

  33. Huang LF, Lu PS, Chiou LC, Chang IL, Shih CJ (2009) IFMBE Proceedings. doi:10.1007/978-3-540-92841-6_337

  34. Peltola T, Jokinen M, Rahiala H, Levanen E, Rosenholm J, Kangasniemi I, Yli-Urpo A (1999) J Biomed Mater Res 44:2

    Article  Google Scholar 

  35. Izqyuedo-Barba I, Colilla M, Vallet-Regi M (2008) J Nanomater 3:1

    Article  Google Scholar 

  36. Souza KC, Ardisson JD, Sousa EM (2009) J Mater Sci Mater Med 20:507

    Article  CAS  Google Scholar 

  37. Yan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, Qiao S, Lu G, Zhao D (2006) Biomaterials 27(18):3396

    Article  CAS  Google Scholar 

  38. National Institute of Standard and Tehnology (2010) http://webbook.nist.gov. Accessed 12 Oct 2010

  39. Ramida A, Munoz B, Pariente JP, Vallet-Regi M (2003) J Sol-Gel Sci Technol 26:1199

    Article  Google Scholar 

  40. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-Amor M, Ylanen HO, Hupa M (2002) J Mater Sci Mater Med 13:1221

    Article  CAS  Google Scholar 

  41. Aguiar H, Solla EL, Serra J, González P, León B, Almeida N, Cachinho S, Davim EJC, Correia R, Oliveira JM, Fernandes MHV (2008) J Non-Cryst Solids 354:4075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was accomplished in the framework of PNII PCCE-101/2008 project granted by the Romanian National University Research Council—CNCSIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Baia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melinte, G., Baia, L., Simon, V. et al. Hydrogen peroxide versus water synthesis of bioglass–nanocrystalline hydroxyapatite composites. J Mater Sci 46, 7393–7400 (2011). https://doi.org/10.1007/s10853-011-5700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5700-8

Keywords

Navigation