Skip to main content

Advertisement

Log in

Three-dimensional fractal analysis of fracture surfaces in titanium–iron particulate reinforced hydroxyapatite composites: relationship between fracture toughness and fractal dimension

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fractal dimension has been considered as a measure of fracture surface roughness of materials. Three-dimensional (3D) surface analysis is anticipated to provide a better evaluation of fracture surface toughness and fractal dimension. The objective of this study was to quantify the fracture surfaces and identify a potential relationship between fracture toughness and fractal dimension in a new type of core–shell titanium–iron particulate reinforced hydroxyapatite matrix composites using SEM stereoscopy coupled with a 3D surface analysis. The obtained results showed that both fracture surface roughness and fractal dimension increased with increasing amount of core–shell Ti–Fe reinforcing particles. The fractal dimension was observed to be a direct measure of fracture surface roughness. The fracture toughness of the composites increased linearly with the square root of fractal dimensional increment (i.e., followed the Mecholsky–Mackin equation well) due to the presence of Ti–Fe particles along with the effect of porosity in brittle materials. The 3D fractal analysis was suggested to be a proper tool for quantifying the fracture surfaces and linking the microstructural parameter to fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Dr. Benoît B. Mandelbrot passed away on October 14, 2010, as seen from [2, 3]

References

  1. Mandelbrot BB (2000) The fractal geometry of nature, revised edn, 19th printing. W.H. Freeman and Company, New York

  2. Gomory R (2010) Nature 468:378

    Article  CAS  Google Scholar 

  3. Peitgen H-O (2010) Science 330:926

    Article  CAS  Google Scholar 

  4. Coster M, Chermant JL (1983) Int Metals Rev 28:228

    Google Scholar 

  5. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Nature 308:721

    Article  CAS  Google Scholar 

  6. Mandelbrot BB (2006) Int J Fract 138:13

    Article  Google Scholar 

  7. Cahn RW (1989) Nature 338:201

    Article  Google Scholar 

  8. Lakes R (1993) Nature 361:511

    Article  Google Scholar 

  9. Schaefer DW (1989) Science 243:1023

    Article  CAS  Google Scholar 

  10. Meakin P (1991) Science 252:226

    Article  CAS  Google Scholar 

  11. Wang ZG, Chen DL, Jiang XX, Ai SH, Shih CH (1988) Scripta Metall 22:827

    Article  CAS  Google Scholar 

  12. Williford RE (1990) Scripta Metall Mater 24:455

    Google Scholar 

  13. Charkaluk E, Bigerelle M, Iost A (1998) Eng Fract Mech 61:119

    Article  Google Scholar 

  14. Yang AM, Xiong YH, Liu L (2001) Sci Technol Adv Mater 2:101

    Article  CAS  Google Scholar 

  15. Kotowski P (2006) Int J Fract 141:269

    Article  CAS  Google Scholar 

  16. Venkatesh B, Chen DL, Bhole S (2008) Scripta Mater 59:391

    Article  CAS  Google Scholar 

  17. Tanaka M, Ono J, Sakashita M, Kato R (2009) ISIJ Int 49:1229

    Article  CAS  Google Scholar 

  18. Chappard D, Degasne I, Huré G, Legrand E, Audran M, Baslé MF (2003) Biomaterials 24:1399

    Article  CAS  Google Scholar 

  19. Tanaka M (1995) J Mater Sci 30:3668. doi:https://doi.org/10.1007/BF00351883

    Article  CAS  Google Scholar 

  20. Hilders OA, Ramos M, Pena ND, Saenz L (2006) J Mater Sci 41:5739. doi:https://doi.org/10.1007/s10853-006-0102-z

    Article  CAS  Google Scholar 

  21. Chen CT, Runt J (1989) Polym Commun 30:334

    Article  CAS  Google Scholar 

  22. Kozlov HV, Burya OI, Aloev VZ (2004) Mater Sci 40:491

    Article  CAS  Google Scholar 

  23. Du PH, Xue B, Song YH, Lu SJ, Yu J, Zheng Q (2010) Polym Bull 64:185

    Article  CAS  Google Scholar 

  24. Blacher S, Maquet V, Schils F, Martin D, Schoenen J, Moonen G et al (2003) Biomaterials 24:1033

    Article  CAS  Google Scholar 

  25. Mecholsky JJ, Passoja DE, Feinberg-Ringel KS (1989) J Am Ceram Soc 72:60

    Article  CAS  Google Scholar 

  26. Wasen J, Heier E, Hansson T (1998) Scripta Mater 38:953

    Article  CAS  Google Scholar 

  27. Chen Z, Mecholsky JJ, Joseph T, Beatty CL (1997) J Mater Sci 32:6317. doi:https://doi.org/10.1023/A:1018657731971

    Article  CAS  Google Scholar 

  28. Mechtcherine V (2009) Cem Concr Res 39:620

    Article  CAS  Google Scholar 

  29. Jiang MQ, Meng JX, Gao JB, Wang XL, Rouxel T, Keryvin V et al (2010) Intermetallics 18:2468

    Article  CAS  Google Scholar 

  30. Chen DL, Pang DX, Yang ZJ, Kong S, Wang LT, Yang K et al (1988) J Phys C 21:271

    Article  Google Scholar 

  31. Fratini M, Poccia N, Ricci A, Campi G, Burghammer M, Aeppli G et al (2010) Nature 466:841

    Article  CAS  Google Scholar 

  32. Zaanen J (2010) Nature 466:825

    Article  CAS  Google Scholar 

  33. Rishabh A, Joshi MR, Balani K (2010) J Appl Phys 107:123532. doi:https://doi.org/10.1063/1.3445869

    Article  Google Scholar 

  34. Liang JZ, Wu CB (2010) Mater Sci Technol 18:178

    CAS  Google Scholar 

  35. Liang JZ, Wu CB (2009) J Mater Eng 10:53

    Google Scholar 

  36. Liang JZ, Wu CB (2008) J Appl Polym Sci 109:3763

    Article  CAS  Google Scholar 

  37. Cantor GJ, Brown CA (2009) Wear 266:609

    Article  CAS  Google Scholar 

  38. Briones V, Aguilera JM, Brown C (2006) J Food Eng 77:776

    Article  Google Scholar 

  39. Dougherty G, Henebry GM (2001) Med Eng Phys 23:369

    Article  CAS  Google Scholar 

  40. Wolski M, Podsiadlo P, Stachowiak GW (2009) Proc IMechE H 223:211

    Article  CAS  Google Scholar 

  41. Majumder SR, Mazumdar S (2007) Physica A 377:559

    Article  Google Scholar 

  42. Gentile F, Tirinato L, Battista E, Causa F, Liberale C, di Fabrizio EM et al (2010) Biomaterials 31:7205

    Article  CAS  Google Scholar 

  43. Wang P, Li L, Zhang C, Lei QF, Fang WJ (2010) Biomaterials 31:6201

    Article  CAS  Google Scholar 

  44. Borodinsky LN, Fiszman ML (2001) Methods 24:341

    Article  CAS  Google Scholar 

  45. Mecholsky JJ (2009) Key Eng Mater 409:145

    Article  CAS  Google Scholar 

  46. Bulpakdi P, Taskonak B, Yan J, Mecholsky JJ (2009) Dental Mater 25:634

    Article  CAS  Google Scholar 

  47. Carpinteri A, Paggi M (2010) Int J Fract 161:41

    Article  Google Scholar 

  48. Mecholsky JJ (2006) Mater Lett 60:2485

    Article  CAS  Google Scholar 

  49. Carpinteri A, Pugno N, Puzzi S (2009) Chaos Solitons Fractals 39:1210

    Article  CAS  Google Scholar 

  50. Spagnoli A (2004) Chaos Solitons Fractals 22:589

    Article  Google Scholar 

  51. Tanaka M, Kimura Y, Oyama N, Kato R (2006) J Mater Sci 41:6181. doi:https://doi.org/10.1007/s10853-006-0176-7

    Article  CAS  Google Scholar 

  52. Drummond JL, Thompson M, Super BJ (2005) Dental Mater 21:586

    Article  CAS  Google Scholar 

  53. Della Bona A, Hill TJ, Mecholsky JJ (2001) J Mater Sci 36:2645. doi:https://doi.org/10.1023/A:1017948409986

    Article  CAS  Google Scholar 

  54. Carpinteri A, Chiaia B, Invernizzi S (1999) Theor Appl Fract Mech 31:163

    Article  Google Scholar 

  55. Zhou HW, Xie HP (2003) Surf Rev Lett 10:751

    Article  CAS  Google Scholar 

  56. Tanaka M, Kimura Y, Kayama A, Taguchi J, Kato R (2005) J Mater Sci 40:6291. doi:https://doi.org/10.1007/s10853-005-3140-z

    Article  CAS  Google Scholar 

  57. Ruzicka S, Hausild P (2010) Eng Fract Mech 77:744

    Article  Google Scholar 

  58. Adachi K, Chung SH, Friedrich H, Buseck PR (2007) J Geophys Res 112:D14202. doi:https://doi.org/10.1029/2006JD8296

    Article  Google Scholar 

  59. Elfallagh F, Inkson BJ (2009) J Eur Ceram Soc 29:47

    Article  CAS  Google Scholar 

  60. Chang Q, Chen DL, Ru HQ, Yue XY, Yu L, Zhang CP (2010) Biomaterials 31:1493

    Article  Google Scholar 

  61. Kruzic J, Ritchie RO (2003) J Am Ceram Soc 86:1433

    Article  CAS  Google Scholar 

  62. ANSI/ASME B46.1-2002, Surface texture (Surface roughness, waviness and lay). American Society of Mechanical Engineers, 2002

  63. Kruzic JJ, Satet RL, Hoffmann MJ, Cannon RM, Ritchie RO (2008) J Am Ceram Soc 91:1986

    Article  CAS  Google Scholar 

  64. Kumar R, Prakash KH, Cheang P, Khor KA (2005) Acta Mater 53:2327

    Article  CAS  Google Scholar 

  65. Mecholsky JJ, Mackin TJ (1988) J Mater Sci Lett 7:1145

    Article  CAS  Google Scholar 

  66. Ritchie RO, Dauskardt RH, Yu W, Brendzel AM (1990) J Biomed Mater Res 24:189

    Article  CAS  Google Scholar 

  67. Fett T, Munz D (2006) Arch Appl Mech 76:667

    Article  Google Scholar 

  68. Ponton CB, Rawlings RD (1989) Mater Sci Tech 5:865

    Article  Google Scholar 

  69. Scherrer SS, Denry IL, Wiskott HWA (1998) Dental Mater 14:246

    Article  CAS  Google Scholar 

  70. Kruzic JJ, Ritchie RO (2004) Ceramic Transactions 156:83

    Google Scholar 

  71. Gatto A (2006) J Mater Proc Tech 174:67

    Article  CAS  Google Scholar 

  72. Denry IL, Holloway JA (2004) Dental Mater 20:213

    Article  CAS  Google Scholar 

  73. Imbeni V, Kruzic JJ, Marshall GW, Marshall SJ, Ritchie RO (2005) Nat Mater 4:229

    Article  CAS  Google Scholar 

  74. Merkel I, Messerschmidt U (1992) Mater Sci Eng A 151:131

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of Natural Sciences and Engineering Research Council of Canada (NSERC). Q.C. is also to acknowledge the financial support provided by China Scholarship Council and the Fundamental Research Funds for the Central Universities (N090602001) and D.L.C. is also grateful for the financial support by the Premier’s Research Excellence Award (PREA), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The authors would also like to thank Q. Li, A. Machin, J. Amankrah and R. Churaman for their assistance in the experiments. Professor N. Zhang is also gratefully acknowledged for her continuous encouragement while performing this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Q., Chen, D.L., Ru, H.Q. et al. Three-dimensional fractal analysis of fracture surfaces in titanium–iron particulate reinforced hydroxyapatite composites: relationship between fracture toughness and fractal dimension. J Mater Sci 46, 6118–6123 (2011). https://doi.org/10.1007/s10853-011-5576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5576-7

Keywords

Navigation