Skip to main content
Log in

Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A commercial homopolymer polypropylene was melt blended with commercial nanoclay masterbatch at different concentrations of nanoclay using twin screw extruder (TSE). The influence of three different concentrations (5, 10, and 15 wt%) of the nanoclay on the morphological, thermal, rheological, and mechanical properties was investigated. The morphology of the nanocomposites was characterized using Scanning Electron Microscope (SEM), whereas, the thermal behavior (e.g., melting and crystallization) was characterized using Differential Scanning Calorimetry (DSC). The melt rheology and dynamic mechanical properties were analyzed using a torsional rheometer. Additionally, the tensile properties were characterized as well. The morphological analysis showed that the nanoclay was well distributed in the PP matrix as indicated by the SEM micrographs. The DSC results showed that the presence of nanoclay in the PP matrix increased the degree of crystallinity of PP-nanoclay composites, which reached a maximum at 5 wt% of nanoclay concentration. However, the melting temperature of the PP-nanoclay composites was not affected by the presence of nanoclay particles. In addition, rheological analysis showed that the melt response gradually changed from pseudo-liquid like to pseudo-solid like as the nanoclay concentration increased. Moreover, the storage modulus (G′) increased by increasing nanoclay content. Furthermore, tensile test results showed that the addition of nanoclay leads to a significant enhancement in the mechanical properties of the PP nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Mater Sci Eng 28(1–2):1

    Article  Google Scholar 

  2. Fischer H (2003) Mater Sci Eng 23(6–8):763

    Article  Google Scholar 

  3. Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46(23):10237

    Article  CAS  Google Scholar 

  4. Lei SG, Hoa SV, Ton-That MT (2006) Compos Sci Technol 66(10):1274

    Article  CAS  Google Scholar 

  5. Kannan M, Bhagawan SS, Jose T (2010) J Mater Sci 45:1078. doi:https://doi.org/10.1007/s10853-009-4046-y

    Article  CAS  Google Scholar 

  6. Nath DC, Bandyopadhyay S, Yu A, Zeng Q, Das T, Blackburn D, White C (2009) J Mater Sci 44:6078. doi:https://doi.org/10.1007/s10973-009-0408-6

    Article  CAS  Google Scholar 

  7. Ganguly A, Bhowmick A (2009) J Mater Sci 44:903. doi:https://doi.org/10.1007/s10853-008-3183-z

    Article  CAS  Google Scholar 

  8. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci 31(10):2493

    Article  CAS  Google Scholar 

  9. Messersmith PB, Giannelis EP (1995) J Polym Sci 33(7):1047

    Article  CAS  Google Scholar 

  10. Gilman JW, Kashiwagi T, Brown JET, Lomakin SP (1998) In: Proceeding of 43rd international SAMPE symposium and exhibition—materials and process affordability keys to the future, Book1, vol 43, 31 May–4 June 1998, Anaheim, CA

  11. Gilman JW (1999) Appl Clay Sci 15(1–2):31

    Article  CAS  Google Scholar 

  12. Gilman JW, Jackson CL, Morgan AB, Harris R Jr (2000) Chem Mater 12(7):1866

    Article  CAS  Google Scholar 

  13. Kashiwagi T, Du F, Douglas JF, Karen IW, Harris R Jr, Shields JR (2005) Nat Mater 4(12):928

    Article  CAS  Google Scholar 

  14. Mai YW, Yu ZZ (2006) Polymer nanocomposites. Woodhead Publishing Ltd., Cambridge

    Book  Google Scholar 

  15. Yuan Q, Awate S, Misra RDK (2006) Eur Polym J 42(9):1994

    Article  CAS  Google Scholar 

  16. Yuan Q, Misra RDK (2006) Polymer 47(12):4421

    Article  CAS  Google Scholar 

  17. Modesti M, Lorenzetti A, Bon D, Besco S (2006) Polym Degrad Stab 91(4):672

    Article  CAS  Google Scholar 

  18. Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67(1):87

    Article  CAS  Google Scholar 

  19. Lertwimolnun W, Vergnes B (2005) Polymer 46(10):3462

    Article  CAS  Google Scholar 

  20. Rohlmann CO, Failla MD, Quinzani LM (2006) Polymer 47(22):7795

    Article  CAS  Google Scholar 

  21. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48(18):5308

    Article  CAS  Google Scholar 

  22. Koo CM, Kim MJ, Choi MH, Kim SO, Cheung IJ (2003) J Appl Polym Sci 88(6):1526

    Article  CAS  Google Scholar 

  23. Sharma SK, Nayak SK (2009) Polym Degrad Stab 94(1):132

    Article  CAS  Google Scholar 

  24. Boucard S, Duchet J, Gerard JF, Prele P, Gonzales S (2003) Macromol Symp 194(1):241

    Article  CAS  Google Scholar 

  25. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2008) Compos Sci Technol 69(11–12):1756

    Google Scholar 

  26. Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastic: theory and practice. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  27. Kim HB, Choi JS, Lee CH, Lim ST, Jhon MS, Choi HJ (2005) Eur Polym J 41(4):679

    Article  CAS  Google Scholar 

  28. Lim YT, Park OO (2001) Rheol Acta 40(3):220

    Article  CAS  Google Scholar 

  29. Zhou Y, Rangari V, Mahfuz H, Jeelani S, Mallick PK (2005) Mater Sci Eng 402(1–2):109

    Article  Google Scholar 

  30. Kontou E, Niaounakis M (2006) Polymer 47(4):1267

    Article  CAS  Google Scholar 

  31. Ma J, Zhang S, Qi Z, Li G, Hu Y (2002) J Appl Polym Sci 83(9):1978

    Article  CAS  Google Scholar 

  32. Xu Y, Shang S, Huang J (2010) Polym Test 29:1007–1013

    Article  CAS  Google Scholar 

  33. Kodgire P, Kalgaonkar R, Hambir S, Bulakh N, Jog JP (2001) J Appl Polym Sci 81(7):1786

    Article  CAS  Google Scholar 

  34. Ferry JD (1980) Viscoelastic properties of polymer. Wiley, New York, p 358

    Google Scholar 

  35. Ren J, Silva AS, Krishnamoorti R (2000) Macromolecules 33(10):3739

    Article  CAS  Google Scholar 

  36. Ray SS (2006) J Ind Eng Chem 12(6):811

    CAS  Google Scholar 

  37. Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539

    Article  CAS  Google Scholar 

  38. Ray SS, Okamoto M (2003) Macromol Mater Eng 288(12):936

    Article  CAS  Google Scholar 

  39. Nwabunma D, Kyu T (2008) Polyolefin composites. Wiley-Interscience, New Jersey

    Google Scholar 

  40. Hasegawa N, Okamoto H, Kato M, Usuki A (2000) J Appl Polym Sci 78(11):1918

    Article  CAS  Google Scholar 

  41. Kim JH, Koo CM, Choi YS, Wang KH, Chuung IJ (2004) Polymer 45:7719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SABIC Polymer Research Center (SPRC) at King Saud University for allowing us to use their equipments and to the Engineering Research Center for their financial support. We would also like to thank the Deanship of Scientific Research and Research Center-College of Engineering at King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabeh Elleithy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chafidz, A., Ali, M.Ah. & Elleithy, R. Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder. J Mater Sci 46, 6075–6086 (2011). https://doi.org/10.1007/s10853-011-5570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5570-0

Keywords

Navigation