Skip to main content

Advertisement

Log in

Effect of reversion of strain induced martensite on microstructure and mechanical properties in an austenitic stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effect of reversion of strain induced α′ martensite on mechanical properties of an austenitic stainless steel has been examined. The α′ martensite formed by cold rolling (40%) at 0 °C has been reverted to austenite by carrying out annealing in the temperature range of 300–800 °C for 1 h. Microstructural investigation has demonstrated the enhanced reversion with increasing annealing temperature without any perceptible grain growth up to 800 °C. X-ray diffraction (XRD) analysis has revealed that 40% cold rolling has resulted in the formation of 32% martensite. The residual martensite content has been found to be about 8% after reversion at 800 °C. Different stages of reversion behavior has been examined by differential scanning calorimetric measurement. The variation of dσ/dε with ε is examined to identify different stages of work hardening of the investigated steel. Both tensile strength and percent elongation values increase with increasing annealing temperature up to 500 °C. Beyond that annealing treatment results in the drop of tensile strength value with the consequent increase in percent elongation. Attractive strength–ductility combination (22.80 GPa%) has been achieved after annealing of the 40% cold deformed specimen at 800 °C for 1 h. The fractographic observation corroborates the tensile results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olson GB, Cohen M (1972) J Less Common Metals 28:107

    Article  CAS  Google Scholar 

  2. Maxwell PC, Goldberg A, Shyne JC (1974) Metall Trans 5:1305

    Article  CAS  Google Scholar 

  3. Angel T (1954) J Iron Steel Inst 177:165

    CAS  Google Scholar 

  4. Manogonon PL, Thomas G (1970) Metall Trans 1A:1577

    Article  Google Scholar 

  5. Huang GL, Matlock DK, Krauss G (1989) Metall Mater Trans 20A:1239

    CAS  Google Scholar 

  6. Chio JY, Jin W (1997) Scr Mater 36:99

    Article  Google Scholar 

  7. Venables JA (1962) Philos Mag 7:35

    Article  Google Scholar 

  8. Lagneborgj R (1964) Acta Met 12:823

    Article  Google Scholar 

  9. Manogonon PL, Thomas G (1970) Metall Trans 1A:1587

    Article  Google Scholar 

  10. Ono K, Koppenaal TJ (1974) Metall Trans 5:739

    Article  CAS  Google Scholar 

  11. Tokizane M, Matsumura N, Tsuzaki K, Maki T, Tamura I (1982) Metall Trans A 13A:1379

    Google Scholar 

  12. Tomimura K, Takaki S, Tokunaga Y (1991) ISIJ Int 31:1431

    Article  CAS  Google Scholar 

  13. Di Schino A, Barteri M, Kenny JM (2002) J Mater Sci Lett 21:751

    Article  CAS  Google Scholar 

  14. Smith H, West DRF (1973) J Mater Sci 8:1413. doi:10.1007/BF00551664

    Article  CAS  Google Scholar 

  15. Johannsen DL, Kryolainen A, Ferreira PJ (2006) Metall Trans 37A:2325

    CAS  Google Scholar 

  16. Hill RJ, Howard CJ (1987) J Appl Cryst 20:467

    Article  CAS  Google Scholar 

  17. Schramm RE, Reed RP (1974) Metall Trans 6:1345

    Google Scholar 

  18. Lee SH, Lee JC, Choi JY, Nam WJ (2010) Met Mater Int 16:21

    Article  CAS  Google Scholar 

  19. Mumtaz K, Takahashi S, Echigoya J, Kamada Y, Zhang LF, Kikuchi H, Ara K, Sato M (2004) J Mater Sci 39:85. doi:10.1023/B:JMSC.0000007731.38154.e1

    Article  CAS  Google Scholar 

  20. Güner M, Güler E, Aktas H (2008) Mater Charact 59:498

    Article  Google Scholar 

  21. Padilha AF, Rios PR (2002) ISIJ Int 42:325

    Article  CAS  Google Scholar 

  22. Bowkett MW, Keown SR, Harries DR (1982) Met Sci 16:499

    Article  CAS  Google Scholar 

  23. Fujita H, Ueda S (1972) Acta Metall 20:759

    Article  CAS  Google Scholar 

  24. Rathbun RW, Matlock DK, Krauss G (2000) Scr Mater 42:887

    Article  CAS  Google Scholar 

  25. Morra PV, Böttger AJ, Mittemeijer EJ (2001) J Therm Anal Calorim 64:905

    Article  CAS  Google Scholar 

  26. Kessler H, Pitsch W (1967) Acta Metall 15:401

    Article  CAS  Google Scholar 

  27. Kocks UF (1976) J Eng Mater Technol 98:76

    Article  CAS  Google Scholar 

  28. Estrin Y, Mecking H (1984) Acta Metall 32:57

    Article  Google Scholar 

  29. Feaugas X (1999) Acta Metall 47:3617

    CAS  Google Scholar 

  30. Isaac Samuel E, Choudhary BK, Bhanu Sankara Rao K (2002) Scr Mater 46:507

    Article  Google Scholar 

  31. Ray SK, Samuel KG, Rodriguez P (1992) Trans Indian Inst Met 45:257

    CAS  Google Scholar 

  32. Michel DJ, Moteff J, Lovell AJ (1973) Acta Metall 21:1269

    Article  CAS  Google Scholar 

  33. Kashyap BP, McTaggart K, Tangri K (1988) Philos Mag 57:97

    Article  CAS  Google Scholar 

  34. Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A (2009) Metall Trans A 40A:729

    Article  CAS  Google Scholar 

  35. Nan HN, Lee CG, Suh DW, Kim SJ (2008) Mater Sci Eng A A485:224

    Google Scholar 

  36. Nan HN, Oh CS, Kim G, Kwon O (2009) Mater Sci Eng A A499:462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S.K., Mallick, P. & Chattopadhyay, P.P. Effect of reversion of strain induced martensite on microstructure and mechanical properties in an austenitic stainless steel. J Mater Sci 46, 3480–3487 (2011). https://doi.org/10.1007/s10853-011-5253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5253-x

Keywords

Navigation