Skip to main content

Advertisement

Log in

Formation of novel thermoplastic composites using bicomponent nonwovens as a precursor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study focuses on a novel technique to produce thermoplastic composites directly from bicomponent nonwovens without using any resins or binders. Conceptually, the structure of the bicomponent fibers making up these nonwovens already mimics the fiber–matrix structure of fiber reinforced composites. Using this approach, we successfully produced isotropic thermoplastic composites with polymer combinations of polyethylene terephthalate/polyethylene (PET/PE), polyamide-6/polyethylene (PA6/PE), polyamide-6/polypropylene (PA6/PP), and PP/PE. The effects of processing temperature, fiber volume fraction, and thickness of the preform on the formation and structure of the nonwoven composites were discussed. Processing temperatures of 130 and 165 °C for PE and PP matrices, respectively, resulted in intact composite structures with fewer defects, for fiber volume fraction values of up to 51%. Moreover, an insight into the changes on the fine structure of the bicomponent fibers after processing was provided to better explain the mechanics behind the process. It is hypothesized that the composite fabrication process can result in annealing and increases the degree of crystallinity and melting temperature of polymers by thickening lamellae and/or removing imperfections. One of the other outcomes of this study is to establish what combination of mechanical properties (tensile and impact) nonwoven composites can offer. Our results showed that compared to glass mat reinforced thermoplastic composites, these novel isotropic nonwoven composites offer high specific strength (97 MPa/g cm−3 for PA6/PE), very high strain to failure (152% for PP/PE), and superior impact strength (147 kJ/m2 for PA6/PP) which can be desirable in many critical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gamstedt EK, Berglund LA (2003) In: Harris B (ed) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. CRC Press, Boca Raton, FL

  2. Shanks RA (2004) In: Baillie C (ed) Green composites: polymer composites and the environment. Woodhead Pub, Abington, Cambridge

  3. Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi:10.1007/BF00554928

    Article  CAS  Google Scholar 

  4. He T, Porter RS (1988) J Appl Polym Sci 35:1945

    Article  CAS  Google Scholar 

  5. Zhang JM, Reynolds CT, Peijs T (2009) Compos Part A: Appl Sci Manuf 40:1747

    Article  Google Scholar 

  6. Hine PJ, Ward IM, Olley RH, Bassett DC (1993) J Mater Sci 28:316. doi:10.1007/BF00357801

    Article  CAS  Google Scholar 

  7. Ward IM, Hine PJ (1997) Polym Eng Sci 37:1809

    Article  CAS  Google Scholar 

  8. Ward IM, Hine PJ (2004) Polym 45:1413

    Article  CAS  Google Scholar 

  9. Yan R, Hine P, Ward I, Olley R, Bassett D (1997) J Mater Sci 32:4821. doi:10.1023/A:1018647401619

    Article  CAS  Google Scholar 

  10. Lacroix F, Werwer M, Schulte K (1998) Compos Part A: Appl Sci and Manuf 29:371

    Article  Google Scholar 

  11. Lacroix F, Lu H-Q, Schulte K (1999) Compos Part A: Appl Sci and Manuf 30:369

    Article  Google Scholar 

  12. Peijs T (2003) Mater Today 6:30

    Article  Google Scholar 

  13. Alcock B, Cabrera NO, Barkoula N, Loos J, Peijs T (2006) Compos Part A: Appl Sci and Manuf 37:716

    Article  Google Scholar 

  14. Zhang JM, Peijs T (2010) Compos Part A: Appl Sci and Manuf 41:964

    Article  Google Scholar 

  15. Olley RH, Bassett DC, Hine PJ, Ward IM (1993) J Mater Sci 28:1107. doi:10.1007/BF00400899

    Article  CAS  Google Scholar 

  16. Kabeel MA, Bassett DC, Olley RH, Hine PJ, Ward IM (1994) J Mater Sci 29:4694. doi:10.1007/BF00356511

    Article  Google Scholar 

  17. Rasburn J, Hine PJ, Ward IM, Olley RH, Bassett DC, Kabeel MA (1995) J Mater Sci 30:615. doi:10.1007/BF00356319

    Article  CAS  Google Scholar 

  18. Abo El-Maaty MI, Bassett DC, Olley RH, Hine PJ, Ward IM (1996) J Mater Sci 31:1157. doi:10.1007/BF00353094

    Article  Google Scholar 

  19. Hine PJ, Ward IM, Jordan ND, Olley R, Bassett DC (2003) Polymer 44:1117

    Article  CAS  Google Scholar 

  20. Jordan ND, Bassett DC, Olley RH, Hine PJ, Ward IM (2003) Polymer 44:1133

    Article  CAS  Google Scholar 

  21. Hine PJ, Ward IM (2006) J Appl Polym Sci 101:991

    Article  CAS  Google Scholar 

  22. Hine PJ, Ward IM, Maaty MIAE, Olley RH, Bassett DC (2000) J Mater Sci 35:5091. doi:10.1023/A:1004835816735

    Article  CAS  Google Scholar 

  23. Jordan ND, Olley RH, Bassett DC, Hine PJ, Ward IM (2002) Polymer 43:3397

    Article  CAS  Google Scholar 

  24. Hine PJ, Ward M, Teckoe J (1998) J Mater Sci 33:2725. doi:10.1023/A:1017540530295

    Article  CAS  Google Scholar 

  25. Teckoe J, Olley RH, Bassett DC, Hine PJ, Ward IM (1999) J Mater Sci 34:2065. doi:10.1023/A:1004555608836

    Article  CAS  Google Scholar 

  26. Amornsakchai T, Bassett DC, Olley RH, Hine PJ, Ward IM (2000) J Appl Polym Sci 78:787

    Article  CAS  Google Scholar 

  27. Hine PJ, Olley RH, Ward IM (2008) Compos Sci Technol 68:1413

    CAS  Google Scholar 

  28. Reid RL (1998) Structural mechanics of textile composites: effect of braid construction and geometric parameters on composite performance. PhD dissertation, North Carolina State University, Raleigh, NC

  29. Iroh JO (1999) In: Mark JE (ed) Polymer data handbook. Oxford University Press, New York

  30. Fedorova N (2006) Investigation of the utility of islands-in-the-sea bicomponent fiber technology in the spunbond process. PhD dissertation, North Carolina State University, Raleigh, NC

  31. Jirsâk O, Wadsworth LC (1999) Nonwoven textiles. Carolina Academic Press, Durham, NC

    Google Scholar 

  32. Bershteæin VA, Egorov VM (1994) Differential scanning calorimetry of polymers: physics, chemistry, analysis, technology. Ellis Horwood, New York

    Google Scholar 

  33. Barkoula N, Peijs T, Schimanski T, Loos J (2005) Polym Compos 26:114

    Article  CAS  Google Scholar 

  34. Choi YB, Kim SY (1999) J Appl Polym Sci 74:2083

    Article  CAS  Google Scholar 

  35. Wunderlich B (1973) Macromolecular physics. Academic Press, New York

    Google Scholar 

  36. Mehta A, Gaur U, Wunderlich B (1978) J Polym Sci: Polym Phys Ed 16:289

    Article  CAS  Google Scholar 

  37. Clark EJ, Hoffman JD (1984) Macromolecules 17:878

    Article  CAS  Google Scholar 

  38. Biron M (2007) Thermoplastics and thermoplastic composites: technical information for plastics users. Elsevier, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Maze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasdemir, M., Maze, B., Anantharamaiah, N. et al. Formation of novel thermoplastic composites using bicomponent nonwovens as a precursor. J Mater Sci 46, 3269–3281 (2011). https://doi.org/10.1007/s10853-010-5214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5214-9

Keywords

Navigation