Skip to main content
Log in

Plasma-based processes and thin film equipment for nano-scale device fabrication

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plasma-based thin film equipment and processes have been widely used for micro-electronics, information storage sensors, and energy harvest/storage devices. To achieve higher package density, large storage capacity, and to meet other specific stringent design criteria, the film layer thickness is often reduced to a few nanometers or even to a few angstroms, while the device dimension has been shrinking to sub-micrometer scales. As the material thickness (h) approaches atomic dimension and the device dimension (w × d) approaches a few tens of nanometers, thin film layer uniformity and inter-layer mixing, as well as device edge damage control are crucial for its performance and reliability. In this review paper, we will discuss briefly vacuum and plasma aspects, followed by a detailed review on various plasma-based thin film deposition and removal techniques. The deposition methods discussed here include magnetron sputtering, ion beam deposition (IBD), and plasma enhanced chemical vapor deposition (PECVD). We focus on the advantages and disadvantages of various hardware configurations and how to achieve uniform film growth over large area with minimized interlayer mixing for any specific process. The device patterning aspects cover ion beam etching (IBE), reactive ion etching (RIE), and various techniques for end-point detection of etching processes. We discuss how the definition technique affects edge damage, profile, and dimension (w × d) control, as well as post-definition corrosion behavior. Some specific examples will be presented to highlight how the physical principles can be used in practice for film/device property control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71

Similar content being viewed by others

References

  1. Peng X, Morrone A, Nikolaev K, Kief M, Ostrowski M (2009) J Magn Magn Mater 321:2902

    Article  CAS  Google Scholar 

  2. Whelan FJ, Reidy KE (2001) USP 6,330, 801B1

  3. Choi YS, Nagamine Y, Tsunekawa K, Maehara H, Djayaprawira DD, Yuasa S, Ando K (2007) Appl Phys Lett 90:012505

    Article  Google Scholar 

  4. Chen FF (1984) Introduction to plasma physics and controlled fusion. Plenum Press, New York

    Google Scholar 

  5. Razzak MA, Kondo K, Uesugi Y, Ohno N, Takamura S (2004) J Appl Phys 95(2):427

    Article  CAS  Google Scholar 

  6. Kinder RL, Ellingboe AR, Kushner MJ (2003) Plasma Source Sci Technol 12:561

    Article  CAS  Google Scholar 

  7. Molvik AW, Ellingboe AR (1998) USP # 5,824,602

  8. Beneking C (1990) Appl Phys 68:4461

    Article  CAS  Google Scholar 

  9. Colgan MJ, Meyappan M (1995) In: Popov OA (ed) High density plasma sources: design, physics and performance. Noyes Publication, New Jersey, p 149

    Google Scholar 

  10. Dine S, Jolly J, Guillon J. http://www.icpig.uni-greifswald.de/proceedings/data/Dine_1

  11. You SJ, Kim HC, Chung CW, Chang HY, Lee JK (2003) J Appl Phys 94:7422

    Article  CAS  Google Scholar 

  12. Kikuchi T, Kogoshi S (2003) Jpn J Appl Phys 42:4290

    Article  CAS  Google Scholar 

  13. Samukawa S, Nakagawa Y, Tsukada T, Ueyama H, Shinohara K (1995) Appl Phys Lett 67:1414

    Article  CAS  Google Scholar 

  14. Samukawa S, Donnelly VM, Malyshev MV (2000) Jpn J Appl Phys 39:1583

    Article  CAS  Google Scholar 

  15. Asmussen J (1989) J Vac Sci Technol A7:883

    Google Scholar 

  16. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, New Jersey, p 497

    Google Scholar 

  17. Stevens JE (1995) In: Popov OA (ed) High density plasma sources: design, physics and performance. Noyes Publication, New Jersey, p 312

    Google Scholar 

  18. Sakoda T, Yirenkyi YO, Sungi Y, Otsubo M, Honda C (2001) Jpn J Appl Phys 40:6607

    Article  CAS  Google Scholar 

  19. Tsuboi H, Oata S (2007) Jpn J Appl Phys 46:7475

    Article  CAS  Google Scholar 

  20. Chen FF (1995) In: Popov OA (ed) High density plasma sources: design, physics and performance. Noyes Publication, New Jersey, p 1

    Google Scholar 

  21. Chen W (2007) Private communication

  22. Johnson WL (1995) In: Popov OA (ed) High density plasma sources: design, physics and performance. Noyes Publication, New Jersey, p 100

    Google Scholar 

  23. Ohtsu Y, Okuno Y, Fujita H (1993) Jpn J Appl Phys 32:2873

    Article  CAS  Google Scholar 

  24. Chang SA, Skolnik MB, Altman C (1986) J Vac Sci Technol A4:413

    Google Scholar 

  25. Wasa K, Hayakawa S (eds) (1992) Handbook of sputter deposition technology: principles, technology and applications. Noyes Publications, New Jersey, p 90

    Google Scholar 

  26. Window B, Sharples F, Savvides N (1985) J Vac Sci Technol A3:2368

    Google Scholar 

  27. Window B, Savvides N (1986) J Vac Sci Technol A4:196

    Google Scholar 

  28. Window B, Savvides N (1986) J Vac Sci Technol A4:453

    Google Scholar 

  29. Peng X, Wang Z, Dimitrov D, Boonstra T, Xue S (2007) J Vac Sci Technol A 25:1078

    Article  CAS  Google Scholar 

  30. Powell RA, Rossnagel S (eds) (1999) PVD for microelectronics: sputtering deposition applied to semiconductor manufacturing. Academic Press, New York, p 87

    Google Scholar 

  31. Wickeramanayaka S, Nakagawa Y (1998) Jpn J Appl Phys 37:6193

    Article  Google Scholar 

  32. Landau RF (1986) US patent# 4,622,122

  33. http://www.soleras.com/shunt/shunt.htm

  34. Fujikata J, Ishi T, Mori S (2002) US Patent application # 2002/0086182 A1

  35. Shimazawa K, Tsuchiya Y (2002) US Patent application # 2002/0078550 A1

  36. Wang CP, Do KB, Beasley MR, Geballe TH, Hammond RH (1997) Appl Phys Lett 71:2955

    Article  CAS  Google Scholar 

  37. Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Phys Rev B 63:054416

    Article  Google Scholar 

  38. Williams JD, Johnson ML, Williams DD (2004) 40th Joint Propulsion Conference AIAA-2004-3788 Fort Lauderdale, Florida, July 11–14, paper# AIAA-2004-3788

  39. Tsuge H, Esho S (1981) J Appl Phys 52:4391

    Article  CAS  Google Scholar 

  40. Peng X, Wakeham S, Morrone A, Axdal S, Feldbaum M et al (2009) Vacuum 83:1007

    Article  CAS  Google Scholar 

  41. Shul RJ, Zhang L, Willison CG, Han J, Pearton SJ, Hong J, Abernathy CR, Lester LF (1999) MRS Int J Nitride Semicond Res 4S1, G8.1

  42. Anderson L. http://www.sgtsiliconglen.com/accurate_10.htm

  43. Tokunaga K, Redeker FC, Danner DA, Hess DW (1981) J Electrochem Soc 128:851

    Article  CAS  Google Scholar 

  44. McNevin SC (1990) J Vac Sci Technol B8:1212–1222

    Google Scholar 

  45. Kim YS, Rampersad RH, Tynan GR (1998) Jpn J Appl Phys 37:L502

    Article  CAS  Google Scholar 

  46. http://chemed.chem.purdue.edu

  47. Roth JR (ed) (1995) Industrial plasma engineering—vol 1: principles. IOP press, Bristol, Philadelphia, p 285 (reprint Fig. 9.2)

  48. Keller JH et al (1993) J Vac Sci Technol A11:2487

    Google Scholar 

  49. Yang X, Moravej M, Babayan SE, Nowling GR, Hicks RF (2005) Plasma Sources Sci Technol 14:412

    Article  CAS  Google Scholar 

  50. Remashan K, Chua SJ, Ramam A, Prakash S, Liu W (2000) Semicond Sci Technol 15(4):386

    Article  CAS  Google Scholar 

  51. Heiman N, Minkiewicz V, Chapman B (1980) J Vac Sci Technol 17:731–734

    Article  CAS  Google Scholar 

  52. Tokunaga K, Hess DW (1980) J Electrochem Soc 127:928

    Article  CAS  Google Scholar 

  53. Okamoto N (2009) J Vac Sci Technol A 27:295

    Article  CAS  Google Scholar 

  54. Okamotoa N (2009) J Vac Sci Technol A27:456–460

    Google Scholar 

  55. Arnold JC, Sawin HH (1991) J Appl Phys 70:5314

    Article  CAS  Google Scholar 

  56. Samukawa S (2006) Jpn J Appl Phys 45:2395

    Article  CAS  Google Scholar 

  57. Schaepkens M, Oehrlein GS (1998) Appl Phys Lett 71:1293

    Article  Google Scholar 

  58. Peng X, Wang Z, Lu Y, Lafferty B, McLaughlin T, Ostrowski M (2010) Vacuum 84(9):1

    Article  Google Scholar 

  59. Teraoka Y, Aoki H, Nishiyama I, Ikawa E, Kikkawa T (1995) J Vac Sci Technol A13:2935

    Google Scholar 

  60. Saito M, Touno I, Omiya K, Homma T, Nagatomo T (2002) J Electrochem Soc 149(8):G451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

XP is grateful for stimulating discussion in the past years with the following professionals at various organizations: Dr. Y. Kusano (Riso national Lab, Denmark), Prof. J. Lawler (University of Wisconsin-Madison), Mr. J. Scott (Novellus Corp), Dr. W. Chen (Ulvac Inc), Mr. P. Welsh, Mr. K. Toru, Mr. Kodaira, Ms. Matsui, Mr. S. Furakawa (Canon-Anelva), Dr. B. Oliver and A. Morrone (Seagate Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Matthews, A. & Xue, S. Plasma-based processes and thin film equipment for nano-scale device fabrication. J Mater Sci 46, 1–37 (2011). https://doi.org/10.1007/s10853-010-4974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4974-6

Keywords

Navigation