Skip to main content
Log in

The fracture energy of brittle crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An expression is derived for the fracture energy, γ, in brittle crystals, namely, γ = kd 0 E, d 0 being the lattice spacing, E Young’s modulus perpendicular to the fracture plane, and k is a constant. The value of γ obtained through this expression is compared to experimental data for cubic crystals. Despite the fit, we conclude that because the fracture energy is dominated by the elastic constant, comparisons between a computed γ and experimental data cannot be used to distinguish between bonding functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We recognize that experimental values of γ were not obtained reversibly as defined in Eq. 1, so should lead to greater than predicted values of fracture energy.

References

  1. Gilman JJ (1960) J Appl Phys 31:2208

    Article  CAS  ADS  Google Scholar 

  2. Tromans D, Meech JA (2002) Min Eng 15:1027

    Article  CAS  Google Scholar 

  3. Tromans D, Meech JA (2004) Min Eng 17:1

    Article  CAS  Google Scholar 

  4. Rose JH, Ferrante J, Smith JR (1981) Phys Rev Lett 47:675

    Article  CAS  ADS  Google Scholar 

  5. Vinet P, Ferrante J, Smith JR, Rose JH (1986) J Phys C Solid State Phys 19:L467

    Article  CAS  ADS  Google Scholar 

  6. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. The MIT Press, Cambridge, MA

    Google Scholar 

  7. Sih GH, Paris PC, Irwin GR (1965) Int J Fract Mech 1:189

    CAS  Google Scholar 

  8. Becher PF, Freiman SW (1978) J Appl Phys 49:3779

    Article  CAS  ADS  Google Scholar 

  9. White GS, Freiman SW, Fuller ER, Baker TL (1988) J Mater Res 3:491

    Article  CAS  ADS  Google Scholar 

  10. Freiman SW, Becher PF, Klein PH (1975) Philos Mag 31:829

    Article  CAS  ADS  Google Scholar 

  11. Westwood ARC, Hitch TT (1963) J Appl Phys 34:3085

    Article  CAS  ADS  Google Scholar 

  12. Freiman SW, Mecholsky JJ Jr, Rice RW, Wurst JC (1975) J Am Ceram Soc 58:406

    Article  CAS  Google Scholar 

  13. Jaccodine RJ (1963) J Electrochem Soc 110:524

    Article  CAS  Google Scholar 

  14. Chen CP, Leipold MH (1980) Bull Am Ceram Soc 59:469

    CAS  Google Scholar 

  15. Shockey DA, Groves GW (1968) J Am Ceram Soc 51:299

    Article  CAS  Google Scholar 

  16. Westwood ARC, Goldheim DL (1963) J Appl Phys 34:3335

    Article  CAS  ADS  Google Scholar 

  17. Gutshall PL, Gross GE (1965) J Appl Phys 36:2459

    Article  CAS  ADS  Google Scholar 

  18. Stewart RL, Bradt RC (1980) J Mater Sci 15:67. doi:10.1007/BF00552428

    Article  CAS  ADS  Google Scholar 

  19. Novikov NV, Dub SN (1991) J Hard Mater 2:3

    CAS  Google Scholar 

  20. Van Vechten JA (1969) Phys Rev 187:1007

    Article  ADS  Google Scholar 

  21. Freiman SW, Mecholsky JJ, Becher PF (1991) In: Frechette VD, Varner JR (eds) Fractography of glasses and ceramics II. American Ceramic Society, Columbus, OH, pp 55–78

    Google Scholar 

Download references

Acknowledgement

The authors are particularly grateful to Ed Fuller and Grady White for their contributions to the development of the general expression for fracture and analysis of the elastic properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Freiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiman, S.W., Mecholsky, J.J. The fracture energy of brittle crystals. J Mater Sci 45, 4063–4066 (2010). https://doi.org/10.1007/s10853-010-4491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4491-7

Keywords

Navigation