Skip to main content
Log in

Synthesis and characterization of bimodal rod-like mesoporous carbons from raffinose by SBA-15 templates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous carbons with bimodal rod-like pore structures and tunable pore sizes from 3.66 to 5.42 nm were for the first time obtained by employing SBA-15 as templates and raffinose as carbon precursors. Small angle X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 sorption analysis, and Raman spectroscopy were used to determine the textural properties of the resulting materials. Bimodal frameworks with mesopores (4–5 nm) as well as macropores (125–130 nm) were achieved. The mesoporous carbons lost its ordered structure from the templates due to mesostructural shrinkage and collapse of mesopores, which resulted in partial duplicate of the template and pore-widening effect (meso to macropores). With the increasing of carbonization temperature from 500, 700 to 900 °C, the textural parameters such as specific surface areas, pore volumes, and mean pore diameters all increased significantly. In the temperature range studied, higher carbonization temperature would generate much more abundant porosity. The ratio of I D to I G (I D/I G) indicated a rather low crystallinity with the varying of aging temperature and the carbonization temperatures. The advantage of the procedure was that no acid or other chemical catalysts were involved during the infiltration and carbon formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XT, Chen XH, Song HH (2009) J Mater Sci 44:4661. doi:10.1007/s10853-009-3714-2

    Article  CAS  ADS  Google Scholar 

  2. Inomata K, Otake Y (2009) J Mater Sci 44:4200. doi:10.1007/s10853-009-3560-2

    Article  CAS  ADS  Google Scholar 

  3. Yang HF, Yan Y, Liu Y, Zhang FQ, Zhang RY, Meng Y et al (2004) J Phys Chem B 108:17320

    Article  CAS  Google Scholar 

  4. Shin Y, Fryxell GE (2008) Chem Mater 20:981

    Article  CAS  Google Scholar 

  5. Lu AH, Spliethoff B, Schuth F (2008) Chem Mater 20:5314

    Article  CAS  Google Scholar 

  6. Fulvio PF, Jaroniec M, Liang CD, Dai S (2008) J Phys Chem C 112:13126

    Article  CAS  Google Scholar 

  7. Liu YR (2009) J Mater Sci 44:3600. doi:10.1007/s10853-009-3487-7

    Article  CAS  ADS  Google Scholar 

  8. Mirzaeian M, Hall PJ (2009) J Mater Sci 44:2705. doi:10.1007/s10853-009-3355-5

    Article  CAS  ADS  Google Scholar 

  9. Arcos D, Lopez-Noriega A, Ruiz-Hernandez E, Terasaki O, Vallet-Regi M (2009) Chem Mater 21(6):1000

    Article  CAS  Google Scholar 

  10. Vallet-Regi M, Balas F, Arcos D (2007) Angew Chem Int Ed 46:7548

    Article  CAS  Google Scholar 

  11. Balas F, Manzano M, Horcajada P, Vallet-Regi M (2006) J Am Chem Soc 128:8116

    Article  CAS  PubMed  Google Scholar 

  12. Slowing II, Trewyn BG, Lin VSY (2007) J Am Chem Soc 129:8845

    Article  CAS  PubMed  Google Scholar 

  13. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Nat Nanotechnol 2:295

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743

    Article  CAS  Google Scholar 

  15. Ying JY, Mehnert C, Wong MS (1999) Angew Chem Int Ed 38(1):56

    Article  CAS  Google Scholar 

  16. Lu AH, Schuth F (2006) Adv Mater 18:1793

    Article  CAS  Google Scholar 

  17. Lu AH, Schmidt W, Spliethoff B, Schuth F (2003) Adv Mater 15(19):1602

    Article  CAS  Google Scholar 

  18. Kim TW, Park IS, Ryoo R (2003) Angew Chem 115:4511

    Article  Google Scholar 

  19. Lee HI, Kim JH, You DJ, Lee JE, Kim JM, Ahn WS et al (2008) Adv Mater 20:757

    Article  CAS  Google Scholar 

  20. Vinu A (2008) Adv Funct Mater 18:816

    Article  CAS  Google Scholar 

  21. Jiang XG, Brinker CJ (2006) J Am Chem Soc 128:3451

    Google Scholar 

  22. Yuan SL, Zhang XQ, Chan KY (2009) Langmuir 25:2034

    Article  CAS  PubMed  Google Scholar 

  23. Kadib AE, Hesemann P, Molvinger K, Brandner J, Biolley C, Gaveau P et al (2009) J Am Chem Soc 131:2882

    Article  Google Scholar 

  24. Armandi M, Bonelli B, Otero Arean C, Garrone E (2008) Microporous Mesoporous Mater 112:411

    Article  CAS  Google Scholar 

  25. Armandi M, Bonelli B, Karaindrou EI, Otero Arean C, Garrone E (2008) Catal Today 138:244

    Article  CAS  Google Scholar 

  26. Roggenbuck J, Tiemann M (2005) J Am Chem Soc 127:1096

    Article  CAS  PubMed  Google Scholar 

  27. Lu AH, Schmidt W, Spliethoff B, Schuth F (2004) Chem Eur J 10:6085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Foundation of China (No.50802017), the Medical Science Research Fund of GuangDong Province (No.B2009118) and the Teaching Staff Construction Fund of Guangdong Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Tian, Y., Song, G. et al. Synthesis and characterization of bimodal rod-like mesoporous carbons from raffinose by SBA-15 templates. J Mater Sci 45, 2958–2966 (2010). https://doi.org/10.1007/s10853-010-4292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4292-z

Keywords

Navigation