Skip to main content
Log in

Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new synthetic route to obtain high-purity strontium titanate, SrTiO3, using the sol–gel-hydrothermal reaction of TiCl4 and a SrCl2 solution in an oxygen atmosphere has been developed. In the synthesized products the SrTiO3 nanoparticles are nearly spherical and decrease in size with the reaction time (48 h) down to a diameter of about 40 nm. The microstructure and composition of the as-synthesized samples were investigated by X-ray diffraction (XRD), high-resolution TEM (HRTEM), Raman spectroscopy, atomic force microscopy (AFM), and energy-dispersive X-ray spectroscopy (EDX). All the samples were identified as cubic perovskite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill N (2000) J Phys Chem B 104:6694

    Article  CAS  Google Scholar 

  2. Schrott A, Misewich J, Nagarajan V, Ramesh R (2003) Appl Phys Lett 82:4770

    Article  CAS  ADS  Google Scholar 

  3. Luo J, Maggard P (2006) Adv Mater 18:514

    Article  CAS  Google Scholar 

  4. Liu J, Chena G, Lia Z, Zhang Z (2006) J Solid State Chem 179:3704

    Article  CAS  ADS  Google Scholar 

  5. Rudiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Appl Phys A 80:1247

    Article  Google Scholar 

  6. Wu X, Wu D, Liu X (2008) Solid State Comm 145:255

    Article  CAS  ADS  Google Scholar 

  7. Zhang W, Yin Z, Zhang M (2000) Appl Phys A 70:93

    Article  CAS  ADS  Google Scholar 

  8. Kwun SI, Song TK (1997) Ferroelectrics 197:125

    Article  Google Scholar 

  9. Hernandez B, Chang K, Fisher E, Dorhout P (2002) Chem Mater 14:480

    Article  CAS  Google Scholar 

  10. Mao Y, Banerjec S, Wong S (2003) J Am Chem Soc 125:15718

    Article  CAS  PubMed  Google Scholar 

  11. Dedyk A, Karmanenko S, Leppavuori S, Sakharov V (1998) J Phys Fr 8:217

    Google Scholar 

  12. Hou B, Xu Y, Wu D, Sun Y (2006) Powder Technol 170:26

    Article  CAS  Google Scholar 

  13. Sekar M, Dhanaraj G, Phat H, Patil K (1992) J Mater Sci Mater Electron 3:237

    Article  CAS  Google Scholar 

  14. Xu H, Wei S, Wang H, Zhu M, Yu R, Yan H (2006) J Cryst Growth 292:159

    Article  CAS  ADS  Google Scholar 

  15. McHale J, McIntyre P, Sickafus K, Coppa N (1996) J Mater Res 11:1199

    Article  CAS  ADS  Google Scholar 

  16. Khollam Y, Potdar H, Deshpande S, Gaikwad A (2007) Mater Chem Phys 97:295

    Article  Google Scholar 

  17. Xie J, Ji T, Yang X, Xiao Z, Shi H (2008) Solid State Commun 147:226

    Article  CAS  ADS  Google Scholar 

  18. Mao-yu T, Tian-hao J, Jian X (2007) Chin J Aeronaut 20:177

    Article  Google Scholar 

  19. Demirors A, Imhof A (2009) Mater Chem. doi:10.1021/cm900693r

  20. Su K, Nuraje N, Yang N (2007) Langmuir 23:11369

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimura M (1998) J Mater Res 13:796

    Article  CAS  ADS  Google Scholar 

  22. Venkateswaran U, Naik V, Naik R (1998) Phys Rev B 58:14256

    Article  CAS  ADS  Google Scholar 

  23. Du Y, Chen G, Zhang M (2004) Solid State Commun 130:577

    Article  CAS  ADS  Google Scholar 

  24. Kleemann W, Albertini A, Kuss M, Linder R (1997) Ferroelectrics 203:57

    Article  CAS  Google Scholar 

  25. Akimov I, Sirenko A, Clark A, Hao J, Xi X (2000) Phys Rev Lett 84:4625

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Liu X, McCandlish E, McCandlish L, Bolen K, Ramesh R, Cosandey F, Rossetti G, Riman R (2005) Langmuir 21:3207

    Article  CAS  PubMed  Google Scholar 

  27. Ehre D, Cohen H, Lyahovitskaya V, Lubomirsky I (2008) Phys Rev B 77:184106

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially financed by FONDECYT Grant under contract No 1080401. The authors thank the Facultad de Ciencias Físicas y Matemáticas of the Universidad de Chile for the use of their analytical equipment (XRD, TEM, and XPS). R.A.Z. acknowledges FUNDACION ANDES Grant under contract No C-13876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fuentes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, S., Zarate, R.A., Chavez, E. et al. Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J Mater Sci 45, 1448–1452 (2010). https://doi.org/10.1007/s10853-009-4099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4099-y

Keywords

Navigation