Skip to main content
Log in

Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix “smart” composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The detrimental effects of Pb on the environment and human health have provided the driving force for replacement of Pb–Sn solders with Pb-free alternatives. Sn-rich Pb-free solder alloys with silver and copper alloying additions have higher strength but lower elongation-to-failure than Pb–Sn solders. Thus, these alloys are more susceptible to failure under mechanical shock, drop, and thermal fatigue conditions. In this article, mechanical tensile testing of NiTi–Sn3.5Ag single fiber composites demonstrates superelastic behavior of the composite with 85% strain recovery. Fatigue experiments show an evolution in damage over cycles, and an S–N curve shows sharp transition between a nearly vertical low-cycle fatigue behavior and the high-cycle fatigue regime. The solder composite exhibits constant fatigue strength over the superelastic range of the NiTi fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kang S, Sarkhel AK (1994) J Electron Mater 23:701

    Article  CAS  Google Scholar 

  2. Frear DR, Vianco PT (1994) Metall Trans A 25:1509

    Article  Google Scholar 

  3. Glazer J (1995) Int Mater Rev 40:65

    Article  CAS  Google Scholar 

  4. Abtew M, Selvaduray G (2000) Mater Sci Eng R Rep 27:95

    Article  Google Scholar 

  5. Plumridge WJ (2005) Monatsh Chem 136:1811

    Article  Google Scholar 

  6. Vianco PT, Frear DR (1993) J Electron Mater 45:14

    CAS  Google Scholar 

  7. Choi S, Subramanian KN, Lucas JP, Bieler TR (2000) J Electron Mater 29:1249

    Article  CAS  Google Scholar 

  8. Terashima S, Yoshiharu K, Takuya H, Masamoto T (2003) J Electron Mater 32:1527

    Article  CAS  Google Scholar 

  9. Chawla N, Chawla KK (2006) Metal matrix composites. Springer Press, New York

    Google Scholar 

  10. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  11. Frick CP, Ortega AM, Tyber J, Maksound A, Maier HJ, Liu Y, Gall K (2005) Mater Sci Eng A 405:34

    Article  Google Scholar 

  12. Shimamoto A, Zhao HY, Abe H (2004) Int J Fatigue 26:533

    Article  CAS  Google Scholar 

  13. Vokoun D, Kafka V, Hu CT (2003) Smart Mater Struct 12:680

    Article  CAS  Google Scholar 

  14. Wagner M, Sawaguchi T, Kausträter G, Höffken D, Eggeler G (2004) Mater Sci Eng A 378:105

    Article  Google Scholar 

  15. Wang ZG, Zua XT, Fub YQ, Wang LM (2005) Thermochim Acta 428:199

    Article  CAS  Google Scholar 

  16. Young JM, Van Vliet KJ (2005) J Biomed Mater Res 72:17

    Article  Google Scholar 

  17. Zheng Y, Cui L, Schrooten J (2004) Appl Phys Lett 84:31

    Article  CAS  Google Scholar 

  18. Brinson LC, Schmidtb I, Lammering R (2004) J Mech Phys Solids 52:1549

    Article  CAS  Google Scholar 

  19. Liu JY, Lu H, Chen JM, Alain C, Wu T (2008) J Mater Sci 43:4921. doi:https://doi.org/10.1007/s10853-008-2716-9

    Article  CAS  Google Scholar 

  20. Wei ZG, Sandstrom R, Miyazaki S (1998) J Mater Sci 33:3763. doi:https://doi.org/10.1023/A:1004674630156

    Article  CAS  Google Scholar 

  21. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ (2006) J Mater Sci 41:8152. doi:https://doi.org/10.1007/s10853-006-0556-z

    Article  CAS  Google Scholar 

  22. Dutta I, Majumdar BS, Pan D, Horton WS, Wright W, Wang ZX (2004) J Electron Mater 33:258

    Article  CAS  Google Scholar 

  23. Wang ZX, Dutta I, Majumdar BS (2006) Scripta Mater 54:627

    Article  CAS  Google Scholar 

  24. Wang ZX, Dutta I, Majumdar BS (2006) Mater Sci Eng A 421:133

    Article  Google Scholar 

  25. Kelly A (1987) Strong solids. Clarendon Press, Oxford, p 157

    Google Scholar 

  26. Coughlin JP, Williams JJ, Crawford GA, Chawla N (2009) Metall Mater Trans A (in press)

Download references

Acknowledgements

The authors acknowledge financial support for this research from Intel Corporation (Dr. D. Suh, Dr. R. Mahajan, and Dr. V. Wakharkar). The authors also thank Gordon Moore from the Department of Chemistry and Biochemistry at Arizona State University for his help with the WDS, and the Memry Corporation for providing the NiTi fibers used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coughlin, J.P., Williams, J.J. & Chawla, N. Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix “smart” composites. J Mater Sci 44, 700–707 (2009). https://doi.org/10.1007/s10853-008-3188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3188-7

Keywords

Navigation