Skip to main content
Log in

Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials

  • Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model that was proposed originally to account for optimal superplasticity in metals and alloys with grain size in the micrometer range and later extended in a few subsequent papers to cover optimal superplastic deformation in ceramics, sub-micrometer-grained and nanostructured materials and intermetallics is described, with an emphasis on the current ideas used in this model and the mathematical procedure used at present (yet to be published in detail) for validating the proposals. The central assumption is that the rate controlling deformation process is confined to high-angle grain/interphase boundary regions that are essential for grain boundary sliding developing to a mesoscopic scale (defined to be of the order of a grain diameter or more) and for superplastic flow setting in. The strain rate equation was validated against experimental observations concerning metals, alloys and ceramics of micrometer- and sub-micrometer grain sizes, nanostructured materials and intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. To the best of our knowledge, the first experimental observation using TEM of plane interface formation in any superplastic, alloy was reported in Ref. [123]. As this feature is visible more clearly in Ref. [122], that picture is reproduced here. Very recently, plane interface formation in a nanometer-grained intermetallic was illustrated in Refs. [101, 124] using TEM. Starting from early 1990s, many papers from the groups of Kaibyshev, Mukherjee, Baudelet and Ovid’ko have appeared, in which “cooperative grain boundary sliding” is illustrated using SEM. Evidently, the resolution in those micrographs is not high enough to decide if the deformation is confined to the grain boundary regions only or grain interior adjacent to the grain boundary regions also is involved in the rate controlling deformation process.

References

  1. Padmanabhan KA, Davies GJ (1980) Superplasticity. Springer-Verlag, Heidelberg, Berlin

    Google Scholar 

  2. Kaibyshev OA (1992) Superplasticity in alloys, intermetallides and ceramics. Springer-Verlag, Heidelberg, Berlin

    Google Scholar 

  3. Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Google Scholar 

  4. Mishra RS, Stolyarov VV, Esher C, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A 298:44

    Google Scholar 

  5. Islamgaliev RK, Valiev RZ, Mishra RS, Mukherjee AK (2001) Mater Sci Eng A 304–306:206

    Google Scholar 

  6. McFadden SX, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A 319–321:849

    Google Scholar 

  7. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2002) Mater Sci Eng A 323:318

    Google Scholar 

  8. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Mater Sci Eng A 408:141

    Google Scholar 

  9. Horita Z, Langdon TG (2008) Scr Mater 58:1029

    CAS  Google Scholar 

  10. Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117

    Google Scholar 

  11. Neishi K, Horita Z, Langdon TG (2001) Scr Mater 45:965

    CAS  Google Scholar 

  12. Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Mater Sci Eng A 297:111

    Google Scholar 

  13. Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083

    CAS  Google Scholar 

  14. Neishi K, Uchida T, Yamauchi A, Nakamura K, Horita Z, Langdon TG (2001) Mater Sci Eng A 307:23

    Google Scholar 

  15. Perevezentsev VN, Chuvil’deev VN, Kopylov VI, Syseev AN, Langdon TG (2002) Ann Chimie Sci Materiaux 27:99

    CAS  Google Scholar 

  16. Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Mater Sci Eng A 493:104

    Google Scholar 

  17. Malek P, Turba K, Cieslar M, Drbohlav I, Kruml T (2007) Mater Sci Eng A 462:95

    Google Scholar 

  18. Musin F, Kaibyshev R, Motohashi Y, Itah G (2004) Scr Metall 50:511

    CAS  Google Scholar 

  19. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Scr Mater 46:851

    CAS  Google Scholar 

  20. Cavaliere P, De Marco PP (2007) Mater Sci Eng A 462:206

    Google Scholar 

  21. Cavaliere P, De Marco PP (2007) Mater Sci Eng A 462:393

    Google Scholar 

  22. Kim WJ, Park JD, Wang JY, Sakk WSYY (2007) Scr Mater 57:755

    CAS  Google Scholar 

  23. Wang Q, Wei Y, Chino Y, Mabuchi M (2008) Rare Met 27:719

    Google Scholar 

  24. Wei YH, Wang QD, Zhu YP, Zhou HT, Ding WJ, Chino Y, Mubuchi M (2003) Mater Sci Eng A 360:107

    Google Scholar 

  25. Zhang KF, Ding S, Wang GF (2008) Mater Lett 62:719

    CAS  Google Scholar 

  26. Kim WJ, Lee KE, Park J, Kim MG, Wang JY, Yoon US (2008) Mater Sci Eng A 494:391

    Google Scholar 

  27. Duclos R (2004) J Eur Ceram Soc 24:3103

    CAS  Google Scholar 

  28. Figueiredo FB, Langdon TG (2006) Mater Sci Eng A 430:151

    Google Scholar 

  29. Bate PS, Ridley N, Zhang B (2007) Acta Mater 55:4995

    CAS  Google Scholar 

  30. Valiev RZ, Islamgaliev RK, Semenova IP (2007) Mater Sci Eng A 463:2

    Google Scholar 

  31. Watanabe H, Mukai T, Mabuchi M, Higashi K (2001) Acta Mater 49:2027

    CAS  Google Scholar 

  32. Klassen T, Suryanarayana C, Bormann R (2008) Scr Metall 59:455

    CAS  Google Scholar 

  33. Hiraga K, Kim B-N, Morita K, Yoshida H, Suzuki TS (2007) Sci Technol Adv Mater 8:578

    CAS  Google Scholar 

  34. Morita K, Higara K, Kim B-N (2007) Acta Mater 55:4517

    CAS  Google Scholar 

  35. Kishimoto A, Obata M, Asaeka H, Haya H (2007) J Eur Ceram Soc 27:41

    CAS  Google Scholar 

  36. Xu X, Nishimura T, Hirosaki N, Xie R-J, Yamamoto Y, Tanaka H (2006) Acta Mater 54:255

    CAS  Google Scholar 

  37. Charit I, Chokshi AH (2001) Acta Mater 49:2239

    CAS  Google Scholar 

  38. Imai T, Mao J, Dang S, Shigematsu I, Saito N, L’Esperance G (2004) Mater Sci Eng A 364:281

    Google Scholar 

  39. Zhan G-D, Mitomo M, Xie R-J, Kurashima K (2000) Acta Mater 48:2373

    CAS  Google Scholar 

  40. Zhou X, Hulbert DM, Kuntz JD, Sadangi RK, Shukla V, Kear BH, Mukherjee AK (2005) Mater Sci Eng A 394:353

    Google Scholar 

  41. Chen T, Mohamed FA, Mecartney ML (2006) Acta Mater 54:4415

    CAS  Google Scholar 

  42. Blandin J-J, Dendievel R (2000) Acta Mater 48:1541

    CAS  Google Scholar 

  43. Morita K, Hiraga K (2003) Scr Metall 48:1403

    CAS  Google Scholar 

  44. Kaibyshev OA, Pshenichnyuk AI (2005) Mater Sci Eng A 410–411:105

    Google Scholar 

  45. Muto H, Sakai M (2001) Acta Mater 48:4161

    Google Scholar 

  46. Yasuda K, Okamoto T, Shiota T, Matsuo Y (2006) Mater Sci Eng A 418:115

    Google Scholar 

  47. Balasubramanian N, Langdon TG (2003) Scr Mater 48:599

    CAS  Google Scholar 

  48. Balasubramanian N, Langdon TG (2005) Mater Sci Eng A 409:46

    Google Scholar 

  49. Chokshi AH (2002) J Eur Ceram Soc 22:2469

    CAS  Google Scholar 

  50. Padmanabhan KA, Vasin RA, Enikeev FU (2001) Superplastic flow: phenomenology and mechanics. Springer-Verlag, Heidelberg, Berlin

    Google Scholar 

  51. Mukherjee AK (2002) Mater Sci Eng A 322:1

    Google Scholar 

  52. Zhu YT, Langdon TG (2005) Mater Sci Eng A 409:234

    Google Scholar 

  53. Brown AM, Ashby MF (1980) Scr Metall 14:1297

    CAS  Google Scholar 

  54. Stocker RL, Ashby MF (1973) Scr Metall 7:115

    CAS  Google Scholar 

  55. Derby B, Ashby MF (1984) Scr Metall 18:1079

    CAS  Google Scholar 

  56. Pharr GM (1985) Scr Metall 19:1347

    Google Scholar 

  57. Davies GJ, Edington JW, Cutler CP, Padmanabhan KA (1970) J Mater Sci 5:1091. doi:https://doi.org/10.1007/BF00553897

    CAS  Google Scholar 

  58. Padmanabhan KA (1971) Some aspects of superplasticity in metals. University of Cambridge, UK

  59. Padmanabhan KA (1977) Mater Sci Eng 29:1

    CAS  Google Scholar 

  60. Speight MV (1975) Acta Mater 23:779

    CAS  Google Scholar 

  61. Speight MV (1976) Scr Metall 10:163

    Google Scholar 

  62. Stevens RN (1971) Philos Mag 23:265

    CAS  Google Scholar 

  63. Cannon WR (1972) Philos Mag 25:1489

    Google Scholar 

  64. Ashby MF, Verrall RA (1973) Acta Metall 21:149

    CAS  Google Scholar 

  65. Padmanabhan KA, Schlipf J (1993) In: Guceri SI (ed) Proceedings of the first international conference on transport phenomena in processing. Technomic Publishing Co., Lancaster, PA, p 491

  66. Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:391

    CAS  Google Scholar 

  67. Hahn H, Padmanabhan KA (1997) Philos Mag B 76:559

    CAS  Google Scholar 

  68. Hahn H, Mondal P, Padmanabhan KA (1997) Nanostruct Mater 9:603

    CAS  Google Scholar 

  69. Engler O, Padmanabhan KA, Luecke K (2000) Model Simul Mater Sci Eng 8:477

    Google Scholar 

  70. Markmann J, Bunzel P, Roesner H, Liu KW, Padmanabhan KA, Birringer R, Gleiter H, Weissmueller J (2003) Scr Mater 49:637

    CAS  Google Scholar 

  71. Padmanabhan KA, Gleiter H (2004) Mater Sci Eng A 381:28

    Google Scholar 

  72. Padmanabhan KA, Dinda GP, Hahn H, Gleiter H (2007) Mater Sci Eng A 452–453:462

    Google Scholar 

  73. Bhattacharya SS, Padmanabhan KA (1989) Trans Ind Inst Met 42(Suppl):5123

    Google Scholar 

  74. Gittus JH (1975) Creep, viscoelasticity and creep fracture in solids. Applied Science Publishers, London, p 18

    Google Scholar 

  75. Biscondi M, Goux C (1968) Mem Sci Rev Met 65:167

    CAS  Google Scholar 

  76. Wadsworth J, Palmer IG, Crooks DD, Lewis RE (1983) In: Starke ES Jr, Sandoss TH Jr (eds) Proceedings of the second international Al-Li conference. Met. Soc. AIME, Warrendale, p 111

  77. Kronberg ML, Wilson FH (1949) Trans Am Inst Min Metall Engrs 185:501

    Google Scholar 

  78. Read WT, Shockley W (1950) Phys Rev 78:275

    CAS  Google Scholar 

  79. Brandon DG, Ralph B, Ranganathan S, Wald MS (1964) Acta Metall 12:813

    Google Scholar 

  80. Christian JW, Crocker AG (1980) In: Nabarro FRN (ed) Dislocations in solids, vol 3. North Holland Publishing Co., Oxford, p 165

    Google Scholar 

  81. Pumphrey PH, Gleiter H (1974) Philos Mag 30:593

    CAS  Google Scholar 

  82. Pumphrey PH, Gleiter H (1975) Philos Mag 32:881

    CAS  Google Scholar 

  83. Bullough R, Tewari VK (1979) In: Nabarro FRN (ed) Dislocations in solids, vol 2. North Holland Publishing Co., Oxford, p 1

    Google Scholar 

  84. Bollmann W, Michaut B, Sainfort G (1972) Phys Stat Sol (a) 13:13

    Google Scholar 

  85. Smith DA, Vitek V, Pond RC (1977) Acta Metall 25:475

    CAS  Google Scholar 

  86. Pond RC, Smith DA (1977) Philos Mag 36:353

    CAS  Google Scholar 

  87. Pond RC, Smith DA, Vitek V (1978) Scr Metall 12:699

    CAS  Google Scholar 

  88. Ashby MF, Spaepen F (1978) Scr Metall 12:193

    CAS  Google Scholar 

  89. Ashby MF, Spaepen F, Williams S (1978) Acta Metall 26:1647

    CAS  Google Scholar 

  90. Sutton AP, Vitek V (1980) Scr Metall 14:129

    CAS  Google Scholar 

  91. Sutton AP, Vitek V (1980) In: Ashby MF et al (eds) Proceedings of the international conference on dislocation modelling of physical systems. Pergamon, Oxford, p 549

  92. Sutton AP, Baluffi RW, Vitek V (1981) Scr Metall 15:989

    CAS  Google Scholar 

  93. Sutton AP (1982) Philos Mag A 46:171

    CAS  Google Scholar 

  94. Sutton AP, Vitek V (1983) Philos Trans R Soc A 309:1, 37, 55

    CAS  Google Scholar 

  95. Schwartz D, Vitek V, Sutton AP (1985) Philos Mag A 51:499

    CAS  Google Scholar 

  96. Wolf D (1990) Acta Metall Mater 38:781, 791

    CAS  Google Scholar 

  97. Eshelby JD (1957) Proc Roy Soc A 241:376

    Google Scholar 

  98. Haasen P (1978) Physical metallurgy. Cambridge University Press, Cambridge, pp 46–47

    Google Scholar 

  99. Van Swygenhoven H, Frakas D, Caro A (2000) Phys Rev B 62:831

    Google Scholar 

  100. Perevezentsev VN, Rybin VV, Chuvildeev VN (1992) Acta Metall Mater 40:895

    CAS  Google Scholar 

  101. Sergueeva AV, Mara NA, Valiev RZ, Mukherjee AK (2005) Mater Sci Eng A 410–411:413

    Google Scholar 

  102. Gutkin MYu, Ovid’ko IA, Skiba NV (2004) Acta Mater 52:1711

    CAS  Google Scholar 

  103. Ovid’ko IA, Sheinerman AG (2005) Acta Mater 53:1347

    Google Scholar 

  104. Kaibyshev OA (2002) Mater Sci Eng A 324:96

    Google Scholar 

  105. Edington JW, Melton KN, Cutler CP (1976) Prog Mater Sci 21(2):63

    Google Scholar 

  106. Padmanabhan KA, Luecke K (1986) Z Metallkd 77:765

    CAS  Google Scholar 

  107. Swygenhoven HV, Caro A (1997) Appl Phys Lett 71:1652

    Google Scholar 

  108. Swygenhoven HV, Caro A (1997) Nanostruct Mater 9:669

    Google Scholar 

  109. Schiotz J, DiTollo FD, Jacobsen KW (1998) Nature 391:561

    Google Scholar 

  110. Swygenhoven HV, Caro A (1998) Phys Rev B 58:11246

    Google Scholar 

  111. Swygenhoven HV, Spaczer M, Caro A, Farkas D (1999) Phys Rev B 60:22

    Google Scholar 

  112. Schiotz J, Vegge T, DiTillo FD, Jacobsen KW (1999) Phys Rev B 60:11971

    CAS  Google Scholar 

  113. Swygenhoven HV, Spaczer M, Caro A (1999) Acta Mater 47:3117

    Google Scholar 

  114. Swygenhoven HV, Derlet P (2001) Phys Rev B 64:4105

    Google Scholar 

  115. Venkatesh TA, Bhattacharya SS, Padmanabhan KA, Schlipf J (1996) Mater Sci Technol 12:635

    CAS  Google Scholar 

  116. Enikeev FU, Padmanabhan KA, Bhattacharya SS (1999) Mater Sci Technol 15:673

    CAS  Google Scholar 

  117. Gifkins RC (1976) Metall Trans 7A:1225

    CAS  Google Scholar 

  118. Keblinski P, Wolf D, Phillpot SR, Gleiter H (1999) Scr Metall Mater 41:631

    CAS  Google Scholar 

  119. Matsuki K, Minami K, Tokizawa M, Murakami Y (1979) Met Sci 13:619

    CAS  Google Scholar 

  120. Owen DM, Chokshi AH (1998) Acta Mater 46:667

    CAS  Google Scholar 

  121. Betz U, Padmanabhan KA, Hahn H (2001) J Mater Sci 36:5811. doi:https://doi.org/10.1023/A:1012956005571

    CAS  Google Scholar 

  122. Gouthama, Padmanabhan KA (2003) Scr Mater 49:761

  123. Astanin VV, Faizova SN, Padmanabhan KA (1996) Mater Sci Technol 1:489

    Google Scholar 

  124. Mara NA, Sergueeva AV, Mara TD, McFadden SX, Mukherjee AK (2007) Mater Sci Eng A 463:238

    Google Scholar 

  125. Inoue A (2000) Acta Mater 48:279

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Padmanabhan.

Additional information

This paper is dedicated to Prof. T. R. Anantharaman, who celebrated his 80th birthday recently.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmanabhan, K.A. Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials. J Mater Sci 44, 2226–2238 (2009). https://doi.org/10.1007/s10853-008-3076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3076-1

Keywords

Navigation