Skip to main content
Log in

High-pressure torsion for production of magnetoresistance in Cu–Co alloy

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The process of high-pressure torsion (HPT) was applied to control the size and distribution of ferromagnetic Co particles in a Cu–Co alloy. Electron probe microanalysis, X-ray diffraction analysis, and transmission electron microscopy confirmed that the Co particles were significantly refined through fragmentation and dissolved with intense straining by HPT. Magnetoresistance appeared by ~2.5% at 77 K with an isotropic feature corresponding to giant magnetoresistance (GMR). It is demonstrated that HPT is a potential process for creating GMR in the Cu–Co alloy prepared by conventional ingot metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE et al (1992) Phys Rev Lett 68:3745. doi:https://doi.org/10.1103/PhysRevLett.68.3745

    Article  CAS  Google Scholar 

  2. Xiao JQ, Jiang JS, Chien CL (1992) Phys Rev Lett 68:3749. doi:https://doi.org/10.1103/PhysRevLett.68.3749

    Article  CAS  Google Scholar 

  3. Takanashi K, Park J, Sugawara T, Hono K, Goto A, Yasuda H et al (1996) Thin Solid Films 275:106. doi:https://doi.org/10.1016/0040-6090(95)07064-8

    Article  CAS  Google Scholar 

  4. Wang W, Zhu F, Weng J, Xiao J, Lai W (1998) Appl Phys Lett 72:1118. doi:https://doi.org/10.1063/1.120942

    Article  CAS  Google Scholar 

  5. Kim IJ, Takeda H, Echigoya J, Kataoka N, Fukamichi K, Shimada Y (1996) Mater Sci Eng A 217–218:363. doi:https://doi.org/10.1016/S0921-5093(96)10347-6

    Article  Google Scholar 

  6. Aizawa T, Zhou C (2000) Mater Sci Eng A 285:1. doi:https://doi.org/10.1016/S0921-5093(00)00709-7

    Article  Google Scholar 

  7. Larde R, Le Breton JM (2005) J Magn Magn Mater 290:1120. doi:https://doi.org/10.1016/j.jmmm.2004.11.471

    Article  Google Scholar 

  8. Rattanasakulthong W, Sirisathitkul C (2005) Physica B 369:160. doi:https://doi.org/10.1016/j.physb.2005.08.010

    Article  CAS  Google Scholar 

  9. Massalski TB, Murray JL, Bennett LH, Baker H, Kacprzak L (1987) Binary phase diagrams, vol 1. American Society of Metals, Metals Park, OH, p 758

  10. Rentenberger C, Karnthaler HP (2005) Acta Mater 53:3031. doi:https://doi.org/10.1016/j.actamat.2005.03.016

    Article  CAS  Google Scholar 

  11. Waitz T, Kazykhanov V, Karnthaler HP (2004) Acta Mater 52:137. doi:https://doi.org/10.1016/j.actamat.2003.08.036

    Article  CAS  Google Scholar 

  12. Sabirov I, Pippan R (2005) Scr Mater 52:1293. doi:https://doi.org/10.1016/j.scriptamat.2005.02.017

    Article  CAS  Google Scholar 

  13. Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117

    Article  Google Scholar 

  14. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Nanostruct Mater 10:691. doi:https://doi.org/10.1016/S0965-9773(98)00107-X

    Article  CAS  Google Scholar 

  15. Sauvage X, Wetscher F, Pareige P (2005) Acta Mater 53:2127

    Article  CAS  Google Scholar 

  16. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344. doi:https://doi.org/10.1016/j.msea.2004.11.007

    Article  Google Scholar 

  17. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33. doi:https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  18. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  19. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi:https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  20. Dutkiewicz J, Kuśnierz J, Maziarz W, Lejkowska M, Garbacz H, Lewandowska M et al (2005) Phys Status Solidi 202:2309. doi:https://doi.org/10.1002/pssa.200521235

    Article  CAS  Google Scholar 

  21. Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR et al (2002) J Magn Magn Mater 242–245:1399. doi:https://doi.org/10.1016/S0304-8853(01)01244-6

    Article  Google Scholar 

  22. Vorhauer A, Rumpf K, Granitzer P, Kleber S, Krenn H, Pippan R (2006) Mater Sci Forum 503–504:299

    Article  Google Scholar 

  23. Suehiro K, Nishimura S, Horita Z (2008) Mater Trans 49:102. doi:https://doi.org/10.2320/matertrans.ME200725

    Article  CAS  Google Scholar 

  24. Servi IS, Turnbull D (1966) Acta Metall 14:161. doi:https://doi.org/10.1016/0001-6160(66)90297-5

    Article  CAS  Google Scholar 

  25. Fujii T, Tamura T, Kato M, Onaka S (2002) Microsc Microanal 8(Suppl. 2):1434CD

    Article  Google Scholar 

  26. Suryanarayana C (2001) Prog Mater Sci 46:1. doi:https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, in Priority Areas “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” and in part by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenji Horita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suehiro, K., Nishimura, S., Horita, Z. et al. High-pressure torsion for production of magnetoresistance in Cu–Co alloy. J Mater Sci 43, 7349–7353 (2008). https://doi.org/10.1007/s10853-008-2813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2813-9

Keywords

Navigation