Skip to main content
Log in

Mixed-mode crack growth in bonded composite joints under standard and impact-fatigue loading

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon fibre reinforced polymers (CFRPs) are now well established in many high-performance applications and look set to see increased usage in the future, especially if lower cost manufacturing and solutions to certain technical issues, such as poor out-of-plane strength, can be achieved. A significant question when manufacturing with CFRP is the best joining technique to use, with adhesive bonding and mechanical fastening currently the two most popular methods. It is a common view that mechanical fastening is preferred for thicker sections and adhesive bonding for thinner ones; however, advances in the technology and better understanding of ways to design joints have lead to increasing consideration of adhesive bonding for traditionally mechanically fastened joints. In high-performance applications fatigue loading is likely and in some cases repetitive low-energy impacts, or impact fatigue, can appear in the load spectrum. This article looks at mixed-mode crack growth in epoxy bonded CFRP joints in standard and impact fatigue. It is shown that the back-face strain technique can be used to monitor cracking in lap-strap joints (LSJs) and piezo strain gauges can be used to measure the strain response of impacted samples. It is seen that there is significant variation in the failure modes seen in the samples and that the crack propagation rate is highly dependent on the fracture mode. Furthermore, it is found that the crack propagation rate is higher in impact fatigue than in standard fatigue even when the maximum load is significantly lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cantwell W, Curtis PT, Morton J (1983) Composites 14:301. doi:https://doi.org/10.1016/0010-4361(83)90020-4

    Article  CAS  Google Scholar 

  2. Ramkumar RL (1983) Effect of low-velocity impact damage on the fatigue behaviour of graphite/epoxy laminates. In: O’Brien TK (ed) Long term behaviour of composites, ASTM STP 813, ASTM, Philadelphia, pp 116–135

  3. Clark G, Saunders DS (1991) Mater Forum 15:333

    CAS  Google Scholar 

  4. Ray D, Sarkar BK, Bose NR (2002) Comp A 33:233. doi:https://doi.org/10.1016/S1359-835X(01)00096-3

    Article  Google Scholar 

  5. Khan B, Rao RMVGK, Venkataraman N (1994) J Reinf Plast Comp 14:1150

    Article  Google Scholar 

  6. Sinmmazçelik T, Armağan A (2006) J Mater Sci A 41(19):6237. doi:https://doi.org/10.1007/s10853-006-0720-5

    Article  Google Scholar 

  7. Davies P (2005) Bonding of composites. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 279–301

    Chapter  Google Scholar 

  8. Tong L, Steven GP (1999) Analysis and design of structural bonded joints. Kluwer Academic Publishing, London

    Book  Google Scholar 

  9. Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering, 2nd edn. Chapman and Hall, London

    Google Scholar 

  10. Hart-Smith LJ (2002) J Compos Tech Res 24:133

    Article  CAS  Google Scholar 

  11. Ashcroft IA, Hughes DJ, Shaw SJ (2000) Assembly Autom 20:150. doi:https://doi.org/10.1108/01445150010321797

    Article  Google Scholar 

  12. Ashcroft IA, Hughes DJ, Shaw SJ (2001) Int J Adhes Adhes 21:87. doi:https://doi.org/10.1016/S0143-7496(00)00038-5

    Article  CAS  Google Scholar 

  13. Schön J, Starikov R (2000) Fatigue of joints in composites structures. In: Harris B (ed) Fatigue in composites. Woodhead Publishing Limited, Cambridge, pp 621–643

    Google Scholar 

  14. Mall S, Ramamurthy G, Rezaizdeh MA (1987) Compos Struct 8:31. doi:https://doi.org/10.1016/0263-8223(87)90014-6

    Article  Google Scholar 

  15. Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001) J Adhesion 75:61. doi:https://doi.org/10.1080/00218460108029594

    Article  CAS  Google Scholar 

  16. Ashcroft IA (2004) J Strain Anal 39:707. doi:https://doi.org/10.1243/0309324042379239

    Article  Google Scholar 

  17. Sato C (2005) Impact behaviour of adhesively bonded joints. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 164–187

    Chapter  Google Scholar 

  18. Beevers A, Ellis MD (1984) Int J Adhes Adhes 4(1):13. doi:https://doi.org/10.1016/0143-7496(84)90055-1

    Article  Google Scholar 

  19. Kihara K, Isono H, Yamabe H, Sugibayashi T (2003) Int J Adhes Adhes 23:253. doi:https://doi.org/10.1016/S0143-7496(03)00004-6

    Article  CAS  Google Scholar 

  20. Adams RD, Harris JA (1996) Int J Adhes Adhes 16:61. doi:https://doi.org/10.1016/0143-7496(95)00050-X

    Article  CAS  Google Scholar 

  21. Yokoyama T (2003) J Strain Anal 38(3):233. doi:https://doi.org/10.1243/030932403765310563

    Article  Google Scholar 

  22. Usui Y, Sakata O (1984) Jpn Soc Proc Eng 18(3):213

    CAS  Google Scholar 

  23. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) Int J Sound Vib 308:467. doi:https://doi.org/10.1016/j.jsv.2007.03.088

    Article  Google Scholar 

  24. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) Compos Sci Technol. doi:https://doi.org/10.1016/j.compscitech.2008.04.030

    Article  CAS  Google Scholar 

  25. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2008) Compos Sci Technol. doi:https://doi.org/10.1016/j.compscitech.2007.11.006

    Article  CAS  Google Scholar 

  26. Brussat TR, Chiu ST, Mostvoy S (1977) Fracture mechanics for structural adhesive bonds—final report, AFML-TR-77-163, Air Force Materials Laboratory, Wright Patterson Air Force Base, Dayton, OH

  27. Sethuraman R, Maiti SK (1988) Eng Fract Mech 30:227. doi:https://doi.org/10.1016/0013-7944(88)90226-3

    Article  Google Scholar 

  28. Rice JR (1968) J Appl Mech 35:379

    Article  Google Scholar 

  29. Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001) Compos Part A 32:45. doi:https://doi.org/10.1016/S1359-835X(00)00131-7

    Article  Google Scholar 

  30. Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001) Compos Part A 32:59. doi:https://doi.org/10.1016/S1359-835X(00)00132-9

    Article  Google Scholar 

  31. Ashcroft IA (2005) Fatigue. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 209–237

    Chapter  Google Scholar 

  32. Schijve J (2001) Fatigue of structures and materials. Kluwer Academic, London

    Google Scholar 

  33. Paris PC, Erdogan F (1963) Trans ASME D 85:528

    Article  CAS  Google Scholar 

  34. Ashcroft IA, Shaw SJ (2002) Int J Adhes Adhes 22:151. doi:https://doi.org/10.1016/S0143-7496(01)00050-1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are very grateful for a partial financial support by the Royal Society within the framework of its International Joint Projects scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Silberschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, I.A., Casas-Rodriguez, J.P. & Silberschmidt, V.V. Mixed-mode crack growth in bonded composite joints under standard and impact-fatigue loading. J Mater Sci 43, 6704–6713 (2008). https://doi.org/10.1007/s10853-008-2646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2646-6

Keywords

Navigation