Skip to main content
Log in

Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tests were conducted on an Al-6061 alloy to evaluate the separate effects of the applied pressure and the torsional straining in processing by high-pressure torsion (HPT). The values of the Vickers microhardness were measured after processing and plotted both linearly across the diameters of the disks and as three-dimensional representations. The measurements show that the applied pressure increases the hardness in the absence of torsional straining. In the presence of a pressure and torsional straining, the hardness values are high at the edges of the disk but lower in the central region. There is a gradual evolution toward a hardness homogeneity with increasing numbers of HPT revolutions. The hardness values at the edges of the disks are reasonably independent of the applied pressure but the extent of this region of high hardness depends upon both the applied pressure and the numbers of turns in the HPT processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753. doi:https://doi.org/10.1016/S1359-6454(02)00466-4

    Article  CAS  Google Scholar 

  4. Stolyarov VV, Valiev RZ (2004) In: Zehetbauer MJ, Valiev RZ (eds) Nanomaterials by severe plastic deformation. Willey-VCH, Weinheim, p 125

    Google Scholar 

  5. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 48:575

    Article  Google Scholar 

  6. Zhilyaev AP, Oh-Ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–A411:277. doi:https://doi.org/10.1016/j.msea.2005.08.044

    Article  Google Scholar 

  7. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705. doi:https://doi.org/10.1016/S1359-6454(96)00156-5

    Article  CAS  Google Scholar 

  8. Wetscher F, Vorhauer A, Stock R, Pippan A (2004) Mater Sci Eng A387–A389:809. doi:https://doi.org/10.1016/j.msea.2004.01.096

    Article  Google Scholar 

  9. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753. doi:https://doi.org/10.1016/S1359-6462(01)00955-1

    Article  CAS  Google Scholar 

  10. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A393:344. doi:https://doi.org/10.1016/j.msea.2004.11.007

    Article  CAS  Google Scholar 

  11. Horita Z, Langdon TG (2005) Mater Sci Eng A410–A411:422. doi:https://doi.org/10.1016/j.msea.2005.08.133

    Article  Google Scholar 

  12. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203. doi:https://doi.org/10.1016/j.actamat.2006.07.029

    Article  CAS  Google Scholar 

  13. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A290:128. doi:https://doi.org/10.1016/S0921-5093(00)00919-9

    Article  CAS  Google Scholar 

  14. Vorhauer A, Pippan R (2004) Scripta Mater 51:921. doi:https://doi.org/10.1016/j.scriptamat.2004.04.025

    Article  CAS  Google Scholar 

  15. Yang Z, Welzel U (2005) Mater Lett 59:3406. doi:https://doi.org/10.1016/j.matlet.2005.05.077

    Article  CAS  Google Scholar 

  16. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A398:66. doi:https://doi.org/10.1016/j.msea.2005.03.083

    Article  CAS  Google Scholar 

  17. Xu C, Langdon TG (2007) J Mater Sci 42:1542. doi:https://doi.org/10.1007/s10853-006-0899-5

    Article  CAS  Google Scholar 

  18. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:https://doi.org/10.1007/s10853-006-0628-0

    Article  CAS  Google Scholar 

  19. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7. doi:https://doi.org/10.2320/matertrans.ME200713

    Article  CAS  Google Scholar 

  20. Čížek J, Procházka I, Brauer G, Anwand W, Kužel R, Cieslar M, Islamgaliev RK (2003) Phys Stat Sol A 195:335. doi:https://doi.org/10.1002/pssa.200305929

    Article  Google Scholar 

  21. Degtyarev MV, Chashchukhina TI, Voronova LM, Patselov AM, Pilyugin VP (2007) Acta Mater 55:6039. doi:https://doi.org/10.1016/j.actamat.2007.04.017

    Article  CAS  Google Scholar 

  22. Ungár T, Balogh L, Zhu YT, Horita Z, Xu C, Langdon TG (2007) Mater Sci Eng A444:153. doi:https://doi.org/10.1016/j.msea.2006.08.059

    Article  Google Scholar 

  23. Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809

    Article  CAS  Google Scholar 

  24. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:47. doi:https://doi.org/10.2320/matertrans.ME200714

    Article  CAS  Google Scholar 

  25. Concustell A, Sort J, Suriñach S, Gebert A, Eckert J, Zhilyaev AP, Baró MD (2007) Intermetallics 15:1038. doi:https://doi.org/10.1016/j.intermet.2006.12.009

    Article  CAS  Google Scholar 

  26. Kovács Zs, Hóbor S, Szabó PJ, Lendvai J, Zhilyaev AP, Révész Á (2007) Mater Sci Eng A449–A451:1139. doi:https://doi.org/10.1016/j.msea.2006.03.133

    Article  Google Scholar 

  27. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Light Metals Educational Foundation of Japan, in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, in the Priority Area “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” and in part by the National Science Foundation of the United States under Grant no. DMR-0243331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Horita, Z. & Langdon, T.G. Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion. J Mater Sci 43, 7286–7292 (2008). https://doi.org/10.1007/s10853-008-2624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2624-z

Keywords

Navigation