Skip to main content
Log in

In situ high-temperature electron microscopy of 3DOM cobalt, iron oxide, and nickel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature electron microscopy was used to follow how the structure of two specimens of three-dimensionally ordered macroporous (3DOM) materials, also known as inverse opals, and one specimen of a precursor to a 3DOM material changed with temperature. The change in grain size with temperature of 3DOM cobalt and 3DOM iron oxide (as magnetite) was monitored in situ in the TEM by heating in stages to 900 and 1,000 °C, respectively. The two materials studied by TEM showed contrasting grain growth behavior. For 3DOM cobalt, carbon surrounding the nanometer-size grains led to slower grain growth in thinner sample areas than in areas in closer contact with other grains; a bimodal grain-size distribution was observed after heating above 700 °C for 90 min. The grains of the 3DOM iron oxide had no carbon coating and coarsened more evenly to give a unimodal size distribution. Line scans from selected-area diffraction (SAD) patterns were used for phase analysis and showed that traces of cobalt oxide present in the 3DOM cobalt sample at room temperature disappeared when the sample was heated above 500 °C. The transformation of a 3DOM precursor material, nickel(II) oxalate–polystyrene (PS) latex composites, was followed in situ by variable-temperature environmental scanning electron microscopy (ESEM) from room temperature to ca. 700 °C in 0.5–0.7 kPa O2. The ESEM examination of the 3DOM precursors permitted real-time observation of the polymer template decomposition and the shrinkage that occurs upon calcination of these precursor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Nature 389:447

    Article  CAS  Google Scholar 

  2. Holland BT, Blanford CF, Stein A (1998) Science 281:538

    Article  CAS  Google Scholar 

  3. Wijnhoven JEGJ, Vos WL (1998) Science 281:802

    Article  CAS  Google Scholar 

  4. Lytle JC, Stein A (2006) In: Cao G, Brinker CJ (eds) Annual reviews of nano research. World Scientific Publishing, Hackensack, NJ, pp 1

    Google Scholar 

  5. Stein A, Li F, Denny NR (2008) Chem Mater 20:649

    Article  CAS  Google Scholar 

  6. Blanford CF, Yan H, Schroden RC, Al-Daous M, Stein A (2001) Adv Mater 13:401

    Article  CAS  Google Scholar 

  7. Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Chem Mater 14:3305

    Article  CAS  Google Scholar 

  8. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  9. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  10. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  11. van Bekkum H, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, Amsterdam

    Google Scholar 

  12. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147

    Article  CAS  Google Scholar 

  13. Luck W, Klier M, Wesslau H (1963) Ber Bunsen Phys Chem 67:75

    Article  CAS  Google Scholar 

  14. Clark NA, Hurd AJ, Ackerson BJ (1979) Nature 281:57

    Article  CAS  Google Scholar 

  15. Yan H, Blanford CF, Holland BT, Smyrl WH, Stein A (2000) Chem Mater 12:1134

    Article  CAS  Google Scholar 

  16. Subramania G, Constant K, Biswas R, Sigalas MM, Ho KM (1999) Appl Phys Lett 74:3933

    Article  CAS  Google Scholar 

  17. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, López C, Meseguer F, Míguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437

    Article  CAS  Google Scholar 

  18. King JS, Gaillot DP, Graugnard E, Summers CJ (2006) Adv Mater 18:1063

    Article  CAS  Google Scholar 

  19. Caruso F, Caruso RA, Möhwald H (1998) Science 282:1111

    Article  CAS  Google Scholar 

  20. John S (1987) Phys Rev Lett 58:2486

    Article  CAS  Google Scholar 

  21. Yablonovitch E (1987) Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

  22. Megens M, Vankats CM, Bosecke P, Vos WL (1997) J Appl Crystallogr 30:637

    Article  CAS  Google Scholar 

  23. Vos WL, Megens M, Vankats CM, Bosecke P (1997) Langmuir 13:6004

    Article  CAS  Google Scholar 

  24. Vos WL, Sprik R, van Blaaderen A, Imhof A, Lagendijk A, Wegdam GH (1996) Phys Rev B 53:16231

    Article  CAS  Google Scholar 

  25. Blanford CF, Carter CB, Stein A (2004) J Microsc Oxford 216:263

    Article  CAS  Google Scholar 

  26. Schroden RC, Stein A (2004) In: Caruso F (ed) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley VCH, Weinheim, Germany, pp 465

    Google Scholar 

  27. Mittleman DM, Bertone JF, Jiang P, Hwang KS, Colvin VL (1999) J Chem Phys 111:345

    Article  CAS  Google Scholar 

  28. Anderson MW, Ohsuna T, Sakamoto Y, Liu Z, Carlsson A, Terasaki O (2004) Chem Commun 907

  29. Kamino T, Yaguchi T, Konno M, Hashimoto T (2005) J Electron Microsc 54:461

    CAS  Google Scholar 

  30. Akita T, Tanaka K, Kohyama M, Haruta M (2007) Catal Today 122:233

    Article  CAS  Google Scholar 

  31. Yoshida R, Suzuki Y, Yoshikawa S (2005) Mater Chem Phys 91:409

    Article  CAS  Google Scholar 

  32. Setoyama M, Irie M, Ohara H, Tsujioka M, Takeda Y, Nomura T, Kitagawa N (1999) Thin Solid Films 341:126

    Article  CAS  Google Scholar 

  33. Lee J, Lee J, Tanaka T, Mori H, Penttila K (2005) JOM-J Min Met Mat S 57:56

    Article  CAS  Google Scholar 

  34. Lee JG, Mori H (2004) Philos Mag 84:2675

    Article  CAS  Google Scholar 

  35. Gai PL, Calvino JJ (2005) Ann Rev Mater Res 35:465

    Article  CAS  Google Scholar 

  36. Gai PL, Kourtakis K (1995) Science 267:661

    Article  CAS  Google Scholar 

  37. Meller N, Hall C, Crawshaw J (2004) J Mater Sci 39:6611

    Article  CAS  Google Scholar 

  38. Meredith P, Donald AM, Meller N, Hall C (2004) J Mater Sci 39:997

    Article  CAS  Google Scholar 

  39. Baranov AN, Chang CH, Shlyakhtini A, Panin GN, Kang TW, Oh YJ (2004) Nanotechnology 15:1613

    Article  CAS  Google Scholar 

  40. Siriwardane RV, Poston JA, Fisher EP (2005) Appl Surf Sci 243:40

    Article  CAS  Google Scholar 

  41. Holland BT, Blanford CF, Do T, Stein A (1999) Chem Mater 11:795

    Article  CAS  Google Scholar 

  42. Yan H, Blanford CF, Holland BT, Parent M, Smyrl WH, Stein A (1999) Adv Mater 11:1003

    Article  CAS  Google Scholar 

  43. Yan H, Blanford CF, Lytle JC, Carter CB, Smyrl WH, Stein A (2001) Chem Mater 13:4314

    Article  CAS  Google Scholar 

  44. Blanford CF (2000) Ph.D. Dissertation, University of Minnesota, Twin Cities

  45. Goodwin JW, Hearn J, Ho CC, Ottewill RH (1973) Br Polym J 5:347

    Article  CAS  Google Scholar 

  46. Goodwin JW, Ottewill RH, Pelton R, Vianello G, Yates DE (1978) Br Polym J 10:173

    Article  CAS  Google Scholar 

  47. Tanrisever T, Okay O, Sönmezoglu IÇ (1996) J Appl Polym Sci 61:485

    Article  CAS  Google Scholar 

  48. Sawada H (1996) Mater Res Bull 31:141

    Article  CAS  Google Scholar 

  49. Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum Press, New York

    Book  Google Scholar 

  50. Hull AW (1917) Phys Rev 10:661

    Article  CAS  Google Scholar 

  51. Sasaki S (1997) Acta Cryst B53:762

    Article  CAS  Google Scholar 

  52. Fjellvag H, Gronvold F, Stolen S, Hauback B (1996) J Solid State Chem 124:52

    Article  CAS  Google Scholar 

  53. Tombs NC, Rooksby HP (1950) Nature 165:442

    Article  CAS  Google Scholar 

  54. Hull AW (1921) Phys Rev 17:571

    Article  CAS  Google Scholar 

  55. Darken LS, Gurry RW (1946) J Am Chem Soc 68:798

    Article  CAS  Google Scholar 

  56. Phillips B, Muan A (1960) J Phys Chem 64:1451

    Article  CAS  Google Scholar 

  57. Presnall DC (1995) In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 248

    Google Scholar 

  58. Rieger J (1996) J Them Anal Calorim 46:965

    Article  CAS  Google Scholar 

  59. Cazaux J (2004) Microsc Microanal 10:670

    Article  CAS  Google Scholar 

  60. Moncrieff DA, Robinson VNE, Harris LB (1978) J Phys D Appl Phys 11:2315

    Article  CAS  Google Scholar 

  61. Lide DR (ed) (1996) CRC handbook of chemistry and physics. CRC Press, Ann Arbor

  62. Grimley RT, Burns RP, Inghram MG (1966) J Chem Phys 45:4158

    Article  CAS  Google Scholar 

  63. Yang MR, Teng TH, Wu SH (2006) J Power Sources 159:307

    Article  CAS  Google Scholar 

  64. Zhu SM, Fahrenholtz WG, Hilmas GE, Zhang SC (2007) Mater Sci Eng A Struct 459:167

    Article  CAS  Google Scholar 

  65. Host JJ, Block JA, Parvin K, Dravid VP, Alpers JL, Sezen T, LaDuca R (1998) J Appl Phys 83:793

    Article  CAS  Google Scholar 

  66. Xiao C, Mirshams RA, Whang SH, Yin WM (2001) Mater Sci Eng A Struct 301:35

    Article  Google Scholar 

  67. Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U (2002) Scripta Mater 47:83

    Article  CAS  Google Scholar 

  68. Carter CB, Norton MG (2007) Ceramic materials: science and engineering. Springer-Verlag, New York

    Google Scholar 

  69. Zeng P, Zajac S, Clapp PC, Rifkin JA (1998) Mater Sci Eng A Struct 252:301

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hongwei Yan for providing the samples of 3DOM materials, Dr. Stuart McKernan for assistance with the ESEM and TEM, and the David and Lucile Packard Foundation and the 3M Heltzer Endowed Chair of the University of Minnesota for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Blanford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanford, C.F., Carter, C.B. & Stein, A. In situ high-temperature electron microscopy of 3DOM cobalt, iron oxide, and nickel. J Mater Sci 43, 3539–3552 (2008). https://doi.org/10.1007/s10853-008-2550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2550-0

Keywords

Navigation