Skip to main content

Advertisement

Log in

Mechanical modeling of viral capsids

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As revealed by techniques of structural biology and single-molecule experimentation, the protein shells of viruses (capsids) are some of nature’s best examples of highly symmetric multiscale self-assembled structures, with impressive mechanical properties of strength and elasticity. Mechanical models of viral capsids built “from the bottom up,” i.e., from all-atom models in the context of molecular dynamics and normal mode analysis, have chiefly focused on unforced vibrational capsid dynamics. Due to the size of viral capsids, which can contain several hundred thousand atoms, the computer power needed for these types of methods has only recently reached the level required for all-atom simulations of entire viral capsids. Coarse-grained normal mode analysis has provided a simplified means of studying the unforced vibrational dynamics of viral capsids. Recent focus on “top-down” mechanical models of viral capsids based on two- and three-dimensional continuum elasticity have provided a theoretical complement to single molecule experiments such as atomic force microscopy, and have advanced the fundamental understanding of the forced mechanics. This review serves to assess the current state of modeling techniques for the study of the mechanics of viral capsids, and to highlight some of the key insights gained from such modeling. In particular, a theme is established of a link between shape—or geometry—and the global mechanical properties of these hierarchical multiscale biological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee SW, Mao C, Flynn CE, Belcher AM (2002) Science 296:892

    Article  CAS  Google Scholar 

  2. Blum AS, Soto CD, Wilson JD, Cole M, Kim, Gnade B, Chatterji A, Ochoa WF, Lin T, Johnson JE, Ratna BR (2004) Nano Lett 4(5):867

    Article  CAS  Google Scholar 

  3. Strable E, Johnson JE, Finn G (2004) Nano Lett 4(8):1385

    Article  CAS  Google Scholar 

  4. Douglas T, Young M (1998) Nature 393(6681):152

    Article  CAS  Google Scholar 

  5. Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Adv Mater 14:415

    Article  CAS  Google Scholar 

  6. Bancroft JB, Hiebert E (1967) Virology 32:354

    Article  CAS  Google Scholar 

  7. Speir JA, Munshi S, Wand GJ, Baker TS, Johnson JE (1995) Structure 3(1):63

    Article  CAS  Google Scholar 

  8. Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL, Rossmann MG (2005) Mol Cell 18:149

    Article  CAS  Google Scholar 

  9. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004). J Comput Chem 25(13):1605

    Article  CAS  Google Scholar 

  10. Berman HM, Henrick K, Nakamura H (2003) Nat Struct Biol 10(12):980, http://www.pdb.org/

    Google Scholar 

  11. Brooksbank C, Camon E, Harris MA, Magrane M, Martin MJ, Mulder N, O’Donovan C, Parkinson H, Tuli MA, Apweiler R, Birney E, Brazma A, Henrick K, Lopez R, Stoesser G, Stoehr P, Cameron G (2003) Nucl Acids Res 31:43, http://www.ebi.ac.uk.

  12. Caspar DL, Klug A (1962) Cold Spring Harb Symp Quant Biol 27: 1

    CAS  Google Scholar 

  13. Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI (2004) J Virol 78:2545

    Article  CAS  Google Scholar 

  14. Branden C, Tooze J (1999) Introduction to protein structure. Garland Publications, New York

    Google Scholar 

  15. Wilk T, Gross I, Gowen BE, Rutten T, de Haas F, Welker R, Krausslich H-G, Boulanger P, Fuller SD (2001) J Virol 75:759

    Article  CAS  Google Scholar 

  16. Schwarcz WD, Barroso SP, Gomes AM, Johnson JE, Schneemann A, Oliveira AC, Silva JL (2004) Cell Mol Biol 50:419

    CAS  Google Scholar 

  17. Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE (2000) Science 289:2129

    Article  CAS  Google Scholar 

  18. Liu H, Qu C, Johnson JE, Case DA (2003) J Struct Biol 142:356

    Article  Google Scholar 

  19. Michels B, Leimkhler M, Lechner MD, Adrian M, Lorber B, Witz J (1999) Eur J Biochem 264:965

    Article  CAS  Google Scholar 

  20. Li PP, Naknanishi A, Tran MA, Ishizu K-I, Kawano M, Phillips M, Handa H, Liddington RC, Kasamatsu H (2003) J Virol 77:7527

    Article  CAS  Google Scholar 

  21. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) Nature 413(6857):748

    Article  CAS  Google Scholar 

  22. Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) PNAS 98(24):13671

    Article  CAS  Google Scholar 

  23. Tzlil S, Kindt J, Gelbart WM, Ben-Shaul A (2003) Biophys J 84:1616

    CAS  Google Scholar 

  24. Purohit PK, Kondev J, Phillips R (2003) PNAS 100(6):3173

    Article  CAS  Google Scholar 

  25. Ivanovska IL, de Pablo PJ, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL (2004) Proc Natl Acad Sci USA 101:6700

    Article  Google Scholar 

  26. Michel J-P, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Schmidt CF, Wuite GJL (2006) Proc Natl Acad Sci USA 103(16):6184

    Article  CAS  Google Scholar 

  27. Klug WS, Bruinsma RF, Michel J-P, Knobler CM, Ivanovska IL, Schmidt CF, Wuite GJL (2006) Phys Rev Lett 97:228101

    Article  CAS  Google Scholar 

  28. Carrasco C, Carreira A, Schaap IAT, Serena PA, Gomez-Herrero J, Mateu MG, de Pablo PJ (2006). Proc Natl Acad Sci USA 103(37):13706

    Article  CAS  Google Scholar 

  29. Kol N, Gladnikoff M, Barlam D, Shneck RZ, Rein A, Rousso I (2006) Biophys J 91(2):767

    Article  CAS  Google Scholar 

  30. Schaap IAT, Carrasco C, de Pablo PJ, MacKintosh FC, Schmidt CF (2006) Biophys J 91(4):1521

    Article  CAS  Google Scholar 

  31. Reddy VS, Giesing HA, Morton RT, Kumar A, Post CB, Brooks CL, Johnson JE (1998) Biophys J 74(1):546

    CAS  Google Scholar 

  32. Zlotnick A, Johnson JM, Wingfield PW, Stahl SJ, Endres D (1999) Biochemistry 38:14644

    Article  CAS  Google Scholar 

  33. Warwicker J (1992) J Mol Biol 223:247

    Article  CAS  Google Scholar 

  34. van Vlijmen HWT, Curry S, Schaefer M, Karplus M (1998) J Mol Biol 275:295

    Article  Google Scholar 

  35. Cagin T, Holder M, Pettitt BM (1991) J Comput Chem 12(5):627

    Google Scholar 

  36. Yoneda S, Kitazawa M, Umeyama H (1996) J Comput Chem 17(2):191

    Article  CAS  Google Scholar 

  37. Phelps DK, Post CB (1995) J Mol Biol 254:544

    Article  CAS  Google Scholar 

  38. Phelps DK, Rossky PJ, Post CB (1998) J Mol Biol 276:331

    Article  CAS  Google Scholar 

  39. Lau WF, Pettitt BM, Lybrand TP (1988) Mol Simul 1:385

    Article  Google Scholar 

  40. Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Structure 14:437

    Article  CAS  Google Scholar 

  41. Cui Q, Bahar I (eds) (2005) Normal mode analysis: theory and applications to biological and chemical systems. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  42. Tama F, Brooks CL III (2006) Annu Rev Biophys Biomol Struct 35:115

    Article  CAS  Google Scholar 

  43. Tama F, Sanejouand Y-H (2001) Protein Eng 14:1

    Article  CAS  Google Scholar 

  44. Ming D, Kong Y, Lambert MA, Huang Z, Ma J (2002) PNAS 99(13):8620

    Article  CAS  Google Scholar 

  45. Tama F, Wriggers W, Brooks CL III (2002) J Mol Biol 321(2):297

    Article  CAS  Google Scholar 

  46. Delarue M, Dumas P (2004) PNAS 101:6957

    Article  CAS  Google Scholar 

  47. Go N, Noguti T, Nishikawa T (1983) Proc Natl Acad Sci USA 80:3696

    Article  CAS  Google Scholar 

  48. Brooks BR, Karplus M (1983) Proc Natl Acad Sci USA 80:6571

    Article  CAS  Google Scholar 

  49. Rader AJ, Vlad DH, Bahar I (2005) Structure 13:413

    Article  CAS  Google Scholar 

  50. Tama F, Brooks CL III (2002) J Mol Biol 318:733

    Article  CAS  Google Scholar 

  51. Tama F, Brooks CL III (2005) J Mol Biol 345(2):299

    Article  CAS  Google Scholar 

  52. Simonson T, Perahia D (1992) Biophys J 61:410

    Article  CAS  Google Scholar 

  53. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4(2):187

    Article  CAS  Google Scholar 

  54. van Vlijmen HWT, Karplus M (2005) J Mol Biol 350:528

    Article  CAS  Google Scholar 

  55. Tirion MM (1996) Phys Rev Lett 77(9):1905

    Article  CAS  Google Scholar 

  56. Durand P, Trinquier G, Sanejouand Y-H (1994) Biopolymers 34:759

    Article  CAS  Google Scholar 

  57. Tama F, Gadea FX, Marques O, Sanejouand Y-H (2000) Proteins: Struct, Funct, Genet 41:1

    CAS  Google Scholar 

  58. Seung HS, Nelson DR (1988) Phys Rev A 38(2):1005

    Article  Google Scholar 

  59. Lidmar J, Mirny L, Nelson DR (2003) Phys Rev E 68:051910

    Article  CAS  Google Scholar 

  60. Nguyen TT, Bruinsma RF, Gelbart WM (2005) Phys Rev E 72:051923

    Article  CAS  Google Scholar 

  61. Nguyen TT, Bruinsma RF, Gelbart WM (2006) Phys Rev Lett 96:078102

    Article  CAS  Google Scholar 

  62. Zandi R, Reguera D (2005) Phys Rev E 72(2):021917

    Article  CAS  Google Scholar 

  63. Vliegenthart GA, Gompper G (2006) Biophys J 91(3):834

    Article  CAS  Google Scholar 

  64. Gibbons MM, Klug WS (2007) Phys Rev E 75:031901.

    Article  CAS  Google Scholar 

  65. Arkhipov A, Freddolino PL, Schulten K (2006) Structure 14:1767

    Article  CAS  Google Scholar 

  66. Ivanovska I, Wuite G, Jönsson B, Evilevitch A (2007) Proc Natl Acad Sci USA 104:9603

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa M. Gibbons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, M.M., Klug, W.S. Mechanical modeling of viral capsids. J Mater Sci 42, 8995–9004 (2007). https://doi.org/10.1007/s10853-007-1741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1741-4

Keywords

Navigation