Skip to main content
Log in

Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A review is provided of the use of analytical models and two dimensional (2D) and three dimensional (3D) microstructure based FEM models to accurately predict the properties of particle reinforced composite materials. It is shown that analytical models do not account for the microstructural factors that influence the mechanical behavior of the material. 2D models do capture the anisotropy in deformation behavior induced by anisotropy in particle orientation. The experimentally-observed dependence of Young's modulus and tensile strength is confirmed by the 2D microstructure-based numerical model. However, because of the 2D stress state, a realistic comparison to actual experimental values is not possible. A serial sectioning process can be used to reproduce and visualize the 3D microstructure of particle reinforced metal matrix composites. The 3D microstructure-based FEM accurately represents the alignment, aspect ratio, and distribution of the particles. Comparison with single particle and multiparticle models of simple shape (spherical and ellipsoidal) shows that the 3D microstructure-based approach is more accurate in simulating and understanding material behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. CHAWLA and K. K. CHAWLA, “Metal Matrix Composites” (Springer, New York) (2006).

  2. K. K. CHAWLA and N. CHAWLA, in “Kirk-Othmer Encyclopedia,” (John-Wiley and Sons, New York, 2004).

  3. N. CHAWLA and Y.-L. SHEN, Adv. Eng. Mater. 3 (2001) 357.

    Article  CAS  Google Scholar 

  4. N. CHAWLA and J. E. ALLISON, in “Encyclopedia of Materials: Science and Technology,” vol. 3, edited by B. Ilschner and P. Lukas (Elsevier Science, 2001) 2969.

  5. Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids. 11 (1963) 127.

    Article  Google Scholar 

  6. J. C. HALPIN and S. W. TSAI, (1967) “Environmental Factors Estimation in Composite Materials Design,” AFML TR 67.

    Google Scholar 

  7. J. LLORCA, A. NEEDLEMAN and S. SURESH, Acta Metall. Mater. 39 (1991) 2317.

    Article  CAS  Google Scholar 

  8. J. R. BROCKENBROUGH, S. SURESH and H. A. WIENECKE, Acta Metall. Mater. 39 (1991) 735.

    Article  CAS  Google Scholar 

  9. Y.-L SHEN, M. FINOT, A. NEEDLEMAN and S. SURESH, Acta Metall. Mater. 42 (1994) 77.

    Article  CAS  Google Scholar 

  10. N. CHAWLA, B. V. PATEL, M. KOOPMAN, K. K. CHAWLA, R. SAHA, B. R. PATTERSON, E. R. FULLER and S. A. LANGER, Mater. Charac. 49 (2003) 395.

    Article  Google Scholar 

  11. N. CHAWLA, B. JESTER and D. T. VONK, Mater. Sci. Eng. A. A346 (2003) 266.

    Google Scholar 

  12. V. V. GANESH and N. CHAWLA, Mater. Sci. Eng. A391 (2005) 342.

    Google Scholar 

  13. B. WUNSCH, X. DENG and N. CHAWLA, in “Computational Methods in Materials Characterisation,” edited by A. A. Mammoli and C. A. Brebbia, (WIT Press, Boston, 2003) 175.

  14. N. CHAWLA, V. V. GANESH and B. WUNSCH, Scripta Mater. 51 (2004) 161.

    Article  CAS  Google Scholar 

  15. Z. SHAN and A. M. GOKHALE, Acta Mater. 49 (2001) 2001.

    Article  CAS  Google Scholar 

  16. N. CHAWLA, R. S. SIDHU and V. V. GANESH, unpublished work.

  17. M. LI, S. GHOSH, T. N. ROUNS, H. WEILAND, O. RICHMOND and W. HUNT, Mater. Charac. 41 (1998) 81.

    Article  CAS  Google Scholar 

  18. M. LI, S. GHOSH and O. RICHMOND, Acta Mater. 47 (1999) 3515.

    Article  CAS  Google Scholar 

  19. S. GHOSH and S. MOORTY, Computa. Mech. 34 (2004) 510.

    Article  Google Scholar 

  20. J. BOSELLI, P. D. PITCHER, P. J. GREGSON and I. SINCLAIR, Mater. Sci. Eng. A300 (2001) 113.

    CAS  Google Scholar 

  21. J. SEGURADO, C. GONZALEZ and J. LLORCA, Acta Mater. 51 (2003) 2355.

    Article  CAS  Google Scholar 

  22. N. CHAWLA, F. OCHOA, V. V. GANESH, X. DENG, M. KOOPMAN, K. K. CHAWLA and S. SCARRITT, J. Mater. Sci.- Mater. Elect. 15 (2004) 385.

    Article  CAS  Google Scholar 

  23. J. N. GOODIER, J. Appl. Mech. 55-7 (1933) 39.

    Google Scholar 

  24. N. CHAWLA, C. ANDRES, J. W. JONES and J. E. ALLISON, Metall. Mater. Trans. 29A (1998) 2843.

    CAS  Google Scholar 

  25. G. S. UPADHYAYA, “Cemented Tungsten Carbides” (Noyes Publ, Westwood, NJ, 1998).

    Google Scholar 

  26. Z. FANG, G. LOCKWOOD and A. GRIFFO, Metall. Mater. Trans. 30A (1999) 3231.

    CAS  Google Scholar 

  27. X. DENG, B. R. PATTERSON, K. K. CHAWLA, M. C. KOOPMAN, Z. FANG, G. LOCKWOOD and A. GRIFFO, J. Refract. Met. Hard Mater. 19 (2001) 547.

    Article  CAS  Google Scholar 

  28. M. KOOPMAN, K. K. CHAWLA, C. COFFIN, B. R. PATTERSON, X. DENG, B. V. PATEL, Z. G. FANG and G. LOCKWOOD, Adv. Eng. Mater. 4 (2002) 37.

    Article  Google Scholar 

  29. V. I. TUMANOV, V. F. FUNKE, M. L. BASKIN and J. A. NOVIKOVA, Akademiya Nauk SSSR, Izvestiya, Metallurgiya, Gornoe Delo. 1 (1964) 170.

    Google Scholar 

  30. J. GURLAND and J. T. NORTON, Trans. AIME. 194 (1952) 1052.

    Google Scholar 

  31. L. BABOUT, E. MAIRE, R. FOUGERES, Acta Mater. 52 (2004) 2475.

    Article  CAS  Google Scholar 

  32. A. BORBÉLY, F. F. CSIKOR, S. ZABLER, P. CLOETENS and H. BIERMANN, Mater. Sci. Eng. A367. (2004) 40.

    Google Scholar 

  33. M. J. HERBERT and C. B. JONES, Comp. Geosci. 27 (2001) 427.

    Article  Google Scholar 

  34. M. YANUKA, F. A. DULLIEN and D. E. ELRICK, J. Micros. 135 (1984) 159.

    Google Scholar 

  35. V. A. MOSS, D. MCEWAN JENKINSON and H. Y. ELDER, J. Micros. 158 (1990) 187.

    Google Scholar 

  36. M. V. KRAL and G. SPANOS, Scripta Mater. 36 (1997) 875.

    Article  CAS  Google Scholar 

  37. J. ALKEMPER and P. W. VOORHEES, J. Micros. 201 (2001) 388.

    Article  CAS  Google Scholar 

  38. R. S. SIDHU and N. CHAWLA, Mater. Charac. 52 (2004) 225.

    Article  CAS  Google Scholar 

  39. J. E. SPOWART, H. M. MULLENS and B. T. PUCHALA, JOM. 10 (2003) 35.

    Google Scholar 

  40. M. V. KRAL and G. SPANOS, Acta Mater., 47 (1999) 711.

    Article  CAS  Google Scholar 

  41. M. LANZAGORTA, M. V. KRAL, J. E. SWAN II, G. SPANOS, R. ROSENBERG, E. KUO, IEEE Visualization '98 Conference Proceedings (1998) p. 487.

  42. N. CHAWLA, C. ANDRES, J. W. JONES and J. E. ALLISON, Metall. Mater. Trans. 29A (1998) 2843.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, N., Chawla, K.K. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J Mater Sci 41, 913–925 (2006). https://doi.org/10.1007/s10853-006-6572-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-6572-1

Keywords

Navigation