Skip to main content
Log in

Finite element analysis of pseudoelastic behavior of NiTi shape memory alloy with thin-wall tube under extension-torsion loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional micromechanical model for pseudoelasticity is implemented into ABAQUS to study the mechanical behavior of a polycrystalline NiTi shape memory alloy under biaxial loading. The model is firstly validated by numerical method and then used to simulate a thin-wall tube under non-proportional extension-torsion loading. When the tensile strain remains constant, the tensile stress decreases with increasing of the shear strain. While unloading the shear strain, the tensile stress increases. This is consistent with experimental results. The model can be used to get an idea of the pseudoelastic behavior of NiTi alloys under complex stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Xie ZL, Humbeeck JV (1999) Mater Sci Eng A 273:673

    Article  Google Scholar 

  2. Besseghini S, Villa E, Tuissi A (1999) Mater Sci Eng A 273:390

    Article  Google Scholar 

  3. Mckelvey AL, Ritchie RO (2001) Metal Mater Trans A 32:731

    Article  Google Scholar 

  4. Gall K, Sehitoglu H, Anderson R et al (2001) Mater Sci Eng A 317:85

    Article  Google Scholar 

  5. Gong JM, Tobushi H (2002) J Function Mater 33:391

    CAS  Google Scholar 

  6. McNaney JM, Imbeni V, Jung Y (2003) Mech Mater 35:969

    Article  Google Scholar 

  7. Sawaguchi T, Kaustrater G, Yawny A et al (2003) Metal Mater Trans A 34:2847

    Article  Google Scholar 

  8. Michutta J, Carroll MC, Yawny A, et al (2004) Mater Sci Eng A 378:152

    Article  Google Scholar 

  9. Nemat-Nasser S, Choi JY, Guo WG, et al (2005) Mech Mater 37:287

    Article  Google Scholar 

  10. Tanaka K, Kobayashi S, Sato Y (1986) Int J Plas 2:59

    Article  CAS  Google Scholar 

  11. Tanaka K (1990) J Pres Ves Technol 112:158

    Article  CAS  Google Scholar 

  12. Liang C, Rogers CA (1990) J Intell Mater Syst Struct 1:207

    Article  Google Scholar 

  13. Lubliner J, Auricchio F (1996) Int J Solid Struct 33:991

    Article  Google Scholar 

  14. Auricchio F, Sacco E (1997) Int J Non-linear Mech 32:1101

    Article  Google Scholar 

  15. Auricchio F, Taylor RL, Lubliner J (1997) Comput Method Appl Mech Eng 146:281

    Article  Google Scholar 

  16. Auricchio F, Sacco E (2001) Int J Solid Struct 38:6123

    Article  Google Scholar 

  17. Auricchio F, Marfia S, Sacco E (2003) Comput Struct 81:2301

    Article  Google Scholar 

  18. Yue ZF, Wan JS, Zhang QM (2003) Rare Met Mater Eng 32:246

    CAS  Google Scholar 

  19. Yan WY, Wang CH, Zhang XP, et al (2002) Smart Mater Struct 11:947

    Article  CAS  Google Scholar 

  20. Wang XM, Wang YF, Baruj A et al (2005) Mater Sci Eng A 394:393

    Article  Google Scholar 

  21. Patoor E, Eberhardt A, Berveiller M (1996) J de Phys IV 6:227

    Google Scholar 

  22. Huang M, Brinson LC, J Mech Phys Solids 97, 96, 1379

  23. Gao X, Huang M, Brinson LC (2000) J Plast 16:1345

    Article  CAS  Google Scholar 

  24. Thamburaja P, Anand L (2002) Int J Plast 18:1607

    Article  CAS  Google Scholar 

  25. Gall K, Sehitoglu H (1999) Int J Plast 15:69

    Article  CAS  Google Scholar 

  26. Gall K, Lim TJ, McDowell DL, et al (2000) Int J Plast 16:1189

    Article  CAS  Google Scholar 

  27. Lim TJ, McDowell DL (2002) J Mech Phys Solids 50:651

    Article  CAS  Google Scholar 

  28. ABAQUS UMAT Subroutine, ABAQUS/Standard User’s Manual, Vol. III, Hibbitt, Karlsson and Sorensen, Pawtucket, USA, 2001. 23.2.29

Download references

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft SFB 459, Sino-German Project GZ050/1 and the Doctorate Foundation of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Frotscher, M., Wang, Y. et al. Finite element analysis of pseudoelastic behavior of NiTi shape memory alloy with thin-wall tube under extension-torsion loading. J Mater Sci 42, 2443–2449 (2007). https://doi.org/10.1007/s10853-006-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1223-0

Keywords

Navigation