Skip to main content
Log in

Surface structure, grafted chain length, and dispersion analysis of PBT prepolymer grafted nano-silica

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dispersion of nano-particles plays a key role in preparing high-performance nano-composites. Steric hindrance stability mechanisms can be applied to improve the dispersibility and stability of nano-particles. The steric hindrance layer can be established when graft polymerization of PBT prepolymer is performed onto the surface of nano-particles. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) characterization revealed the chemical linkage between nano-silica and the grafted prepolymer. Based on XPS and thermal gravimetric analysis (TGA), it is conjectured that the grafted PBT prepolymer was mainly distributed on the surfaces of nano-silica. From transmission electron microscopy (TEM) images the polymer coverage can be observed. System vacuum played an important role in determining the graft amount and the length of the grafted chains. The relationship between vacuum and chain length was investigated by calculating \( \overline M _v \) and TGA. The lower the vacuum, the more the weight loss, and thus the longer the grafted chains. Sedimentation experiments and atomic force microscope (AFM) characterization showed that the grafted nano-silica prepared under the vacuum of 3.9 kPa had the best dispersibility and could disperse homogeneously in tetrachloroethane. Under these conditions, the length of the grafted molecule chains was approximately, 16 units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 FTIR
Fig. 2 TGA
Fig. 3 Si2p
Fig. 4 TEM
Fig. 5 The
Fig. 6 AFM

Similar content being viewed by others

References

  1. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Compos Sci Technol 62:1327

    Article  CAS  Google Scholar 

  2. Jana SC, Jain S (2001) Polymer 42:6897

    Article  CAS  Google Scholar 

  3. Li JX, Silverstein M, Hiltner A, Baer E (1994) J App Polym Sci 52:255

    Article  CAS  Google Scholar 

  4. Wang YJ, Huang S (1996) J App Polym Sci 60:1779

    Article  CAS  Google Scholar 

  5. Jongsomjit B, Chaichana E, Praserthdam P (2005) J Mater Sci 40:2043

    Article  CAS  Google Scholar 

  6. Oda M, Abe T, Suzuki T, Iwashige H, Kutluk G (2002) Mater Res Soc Symp Proc 704:3

    CAS  Google Scholar 

  7. Huang CC, Hwu JR, Su WC, Shieh DB, Tzeng Y, Yeh C-S (2006) Chem Eur J 14:3805

    Article  CAS  Google Scholar 

  8. Xu G, Zhang X, He W, Liu H, Li H (2006) Powder Technol 3:202

    Article  CAS  Google Scholar 

  9. Kuwabata S, Sato K, Tachibana Y, Torimoto T (2005) 207th Meeting of the Electrochemical Society, p 987

  10. Taira S, Yokoyama K (2005) Biotechnol Bioeng 89:835

    Article  CAS  Google Scholar 

  11. Sun Y, Zhang Z, Wong CP (2005) J Colloid Interface Sci 292:436

    Article  CAS  Google Scholar 

  12. Wang J, White WB, Adair JH (2006) J Phys Chem B 110:4679

    Article  CAS  Google Scholar 

  13. Cezar N, Xiao H (2005) Ind Eng Chem Res 44:539

    Article  CAS  Google Scholar 

  14. Garcia M, van Zyl WE, ten Cate MGJ, Stouwdam JW, Verweij H, Pimplapure MS, Weickert G (2003) Ind Eng Chem Res 42:3750

    Article  CAS  Google Scholar 

  15. Jeong SH, Hwang YH, Yi SC (2005) J Mater Sci 40:5413

    Article  CAS  Google Scholar 

  16. Zhang J, Wang X, Lu L, Li D, Yang X (2003) J Appl Polym Sci 87:381

    Article  CAS  Google Scholar 

  17. Mackor EL, Van der Waals JH (1952) J Colloid Interface Sci 7:535

    CAS  Google Scholar 

  18. Wang LW, Sigmund W, Aldinger F (2000) J Am Ceram Soc 83:691

    Article  CAS  Google Scholar 

  19. Wang LW, Sigmund W, Aldinger F (2000) J Am Ceram Soc 83:697

    Article  CAS  Google Scholar 

  20. Nishizawa N, Nishimura J, Saitoh H, Fujiki K, Tsubokawa N (2005) Prog Org Coatings 5:306

    Article  CAS  Google Scholar 

  21. Ottewill RH, Rennie AA, Schofield A (1990) Colloid Polym Sci 81:1

    Article  CAS  Google Scholar 

  22. Bergstrom L, Shinozaki K, Tomiyama H (1997) J Am Ceram Soc 80:291

    Article  Google Scholar 

  23. Bauer F, Freyer A, Ernst H, Gläsel HJ, Mehnert R (2001) Appl Surf Sci 179:119

    Article  Google Scholar 

  24. Bergstrom L (1996) J Am Ceram Soc 79:3033

    Article  Google Scholar 

  25. Silverstein RM, Webster FX (1998) Spectrometric Identification of Organic Compounds. John Wiley & Sons, New York

    Google Scholar 

  26. Thomason JL, Dwight DW (1999) Composites: Part A 30:1401

    Article  Google Scholar 

  27. Briggs D (1998) Surface analysis of polymer by XPS and static SIMS. Cambridge University Press, Oxford

    Google Scholar 

  28. Maitra P, Ding J, Huang HS, Wunder L (2003) Langmuir 19:8994

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NJUST Funding, XKF05010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Che.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che, J., Xiao, Y., Luan, B. et al. Surface structure, grafted chain length, and dispersion analysis of PBT prepolymer grafted nano-silica. J Mater Sci 42, 4967–4975 (2007). https://doi.org/10.1007/s10853-006-0537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0537-2

Keywords

Navigation