Skip to main content

Advertisement

Log in

Processing of sucrose to low density carbon foams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel process for preparation low density carbon foams from sucrose has been demonstrated. A resin prepared by heating aqueous acidic sucrose solution when heated in an open Teflon mould at 120 °C undergoes foaming and then setting in to a solid organic foam. The solid organic foam undergoes carbonization in air by dehydration at 250 °C under isothermal condition. Carbon foams thus obtained sintered at temperature in the range 600–1,400 °C showed density in the range 115–145 mg/cc and electrical conductivity in the range 1.5 × 10−5 to 0.2 ohm−1 cm−1, respectively. The carbon foams contain spherical cells of size in the range 450–850 μm and the cells are interconnected through circular or oval shape windows of size in the range 80–300 μm. The carbon foam samples sintered at 1,400 °C showed compressive strength of 0.89 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cowlard FC, Lewis JC (1967) J Mater Sci 2:507

    Article  CAS  Google Scholar 

  2. Knippenberg WF, Dersmacher B (1976) Philips Tech Rev 36:93

    CAS  Google Scholar 

  3. Noda T, Inagaki M, Yamada S (1969) J Non-Cryst Solids 1:93

    Article  Google Scholar 

  4. Klett RD (1975) High temperature insulating carbonaceous materials. US Patent 3,914,392

  5. Bonzom A, Crepaux AP, Montard AMEJ (1981) Process for preparing pitch foams and products so produced. US Patent, 4,276,246

  6. Marek R, Udichak W (1975) Foam carbonization and resulting structure. US Patent 3,922,334

  7. Vinton C, Franklin C (1975) Method for the preparation of carbon structure. US Patent 3,927,186

  8. Spradling DM, Andrew Guth R (2003) Adv Mater Process 11:29

    Google Scholar 

  9. Klett JW, Mcmillan AD, Gallego NC, Walls CA (2004) J Mater Sci 39:3659

    Article  CAS  Google Scholar 

  10. Raley CF Jr, Asher DR (1976) Process for preparing macroporous open cell carbon foam from normally crystalline vinylidene chloride polymer. US Patent 3,960,770

  11. Droege MW (1999) Low density open cell organic foam, low density carbon foams, and method for preparing the same. US Patent 5,945,084

  12. Stankiewicz EP (2000) Method for producing controlled aspect ratio reticulated carbon foam and the resultant foam. US Patent 6,103,149

  13. Vinton CS, Franklin CH (1979) Activated reticulated or unreticulated carbon structures. US Patent 4,154,704

  14. Pekala RW (1989) Low density, resorcinol – formaldehyde aerogels. US Patent 4,873,218

  15. Mukai SR, Tamitsuji C, Nishihara H, Tamon H (2005) Carbon 43:2628

    Article  CAS  Google Scholar 

  16. Nishihara H, Mukai SR, Tamon H (2004) Carbon 42:899

    Article  CAS  Google Scholar 

  17. Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon 42:497

    Article  CAS  Google Scholar 

  18. Yamashita J, Ojima T, Shioya M, Hatori H, Yamada Y (2003) Carbon 41:285

    Article  CAS  Google Scholar 

  19. Klett RD (1975) High temperature insulating carbonaceous material. US Patent 3,914,392

  20. Nagle DC, Byrne CE (2003) Carbonized wood and materials formed therefrom. US Patent 6,670,039

  21. Stiller AH, Plucinski J, Yocum A (2003) Method of making carbon foam. US Patent 6,544,491

  22. Fujii M, Minohata M (1990) Method for producing elastic graphite structures. US Patent 4,908,200

  23. Hardcastle LA, Sheppard RG, Dingus DF (2003) Process for making carbon foam induced by process depressurization. US Patent 6,576,168

  24. Klett JW (2003) Pitch-based carbon foam and composites. US Patent 6,663,842

  25. Yamada Y, Imamura T, Honda H, Fujii M, Minohata M (1989) Graphite structures and method for production thereof. US Patent 4,873,071

  26. Li TQ, Wang CY, An BX, Wang H (2005) Carbon 43:2030

    Article  CAS  Google Scholar 

  27. Klett JW, Mcmillan AD, Gallego NC, Burchell TD, Walls CA (2004) Carbon 42:1849

    Article  CAS  Google Scholar 

  28. Bohme K, Einicke WD, Klepel O (2005) Carbon 43:1918

    Article  Google Scholar 

  29. Finar IL (1973) Organic chemistry volume. I. The fundamental principles. Longman, London, pp 503–530

    Google Scholar 

  30. Kinoshita K (1988) Carbon electrochemical and physical properties. Wiley & Sons, USA, pp 22–75

  31. Biscoe J, Warren BE (1942) J Appl Phys 13:364

    Article  CAS  Google Scholar 

  32. Jenkins GM, Kawamura K (1976) Polymeric carbons, carbon fibers, glass and char. Cambridge University press, New York

    Google Scholar 

  33. Long JC (1978) In: Grayson M (ed) Encyclopedia of chemical technology, vol 4. John Wiley and Sons, New York, pp 556–560

Download references

Acknowledgements

The authors thank Dr. J. Narayana Das, Director, Naval Materials Research Laboratory for his support and keen interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prabhakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakaran, K., Singh, P.K., Gokhale, N.M. et al. Processing of sucrose to low density carbon foams. J Mater Sci 42, 3894–3900 (2007). https://doi.org/10.1007/s10853-006-0481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0481-1

Keywords

Navigation