Skip to main content
Log in

Fabrication of CuSiC metal matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A CuSiC MMC heatspreader will offer high thermal conductivity between 250 and 325 W/mK and corresponding adjustable thermal expansion coefficient between 8.0 and 12.5 ppm/°C. The primary challenge of CuSiC manufacture was to prevent reaction between copper and silicon carbide during high temperature densification, which dramatically degraded the thermal conductivity. In this study, the key issue addressed was the Si attack of Cu at the temperatures necessary for CuSiC fabrication (850 to 1200°C). Decomposition of SiC in contact with copper will dissolve Si in Cu causing a dramatic decrease of Cu thermal conductivity. This diffusion of Si into Cu can be prevented by the application of reliable barrier layers to diminish mass transport through the diffusion path and thereby minimizing the chemical interaction. A reliable barrier coating was identified and used to fabricate the CuSiC composites. The CuSiC composites were then characterized by SEM, TEM, XRD and XPS. Chemical analysis and thermal conductivity by laser flash diffusivity measurement illustrated the effectiveness of the barriers. A CuSiC composite having thermal conductivity of 322.9 W/m-K was successfully fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. SUNDBERG et al., Proceedings of PCIM 2001 Power Electronics Conference, Rosemont September (2001) p. 172.

  2. N. J. GERNERT et al., Thermacore International, https://doi.org/www.thermacore.com/pdfs/kilowatt.pdf, p. 1.

  3. C. RADO, B. DREVET and N. EUSTATHOPOULOS, Acta Materialia 48 (2000) 4483.

    Article  CAS  Google Scholar 

  4. E. KOLAWA, J. S. CHEN, J. S. REID, P. J. POKELA and M. A. NICOLET, J. Appl. Phys. 70 (1991) 1369.

    Article  CAS  Google Scholar 

  5. C. RADO, S. KALOGEROPOULOU and N. EUSTATHOPOULOS, Scripta. Mater. 42 (2000) 203.

    Article  CAS  Google Scholar 

  6. D. TYLER and W. BLACK, https://doi.org/www.asminternational.org/hbo/do/highlight/content/V02/D01/A09

  7. J. J. LEWANDOWSKI, C. LIU and W. H. HUNT, Mater. Sci. Eng. A107 (1989) 241.

    Article  CAS  Google Scholar 

  8. L. C. STONE and P. TSAKIROPOULOS, Mater. Sci. Technol. 11 (1995) 213.

    Article  CAS  Google Scholar 

  9. W. A. SPITZIG, J. F. KELLY and O. RICHMOND, Metallography 18 (1985) 235.

    Article  CAS  Google Scholar 

  10. H. SCHWARZ and H. E. EXNER, J. Microsc. 129 (1983) 155.

    Article  Google Scholar 

  11. K. H. HANISCH and D. STOYAN, ibid. 122 (1981) 131.

    Article  Google Scholar 

  12. A. OLSZOWKA-MYALSKA, J. SZALA and J. CWAJNA, Mater. Characterization 46 (2001) 189.

    Article  CAS  Google Scholar 

  13. P. A. KARNEZIS, G. DURRANT and B. CANTOR, ibid. 40 (1998) 97.

    Article  CAS  Google Scholar 

  14. R. T. DEHOFF and F. N. RHINES, “Quantitative Microscopy” (McGraw-Hill, New York, 1968).

    Google Scholar 

  15. E. E. UNDERWOOD, “Quantitative Stereology” (Addison-Wesley, Reading, MA, 1970).

    Google Scholar 

  16. I. SAXL, Distance methods in metallurgy. Proc IV Int Conf STERMAT'94, WislCa (October 3–6). Fotobit Design, Krakow, Poland, p. 65.

  17. L. M. KARLSSON, Proc IV Int. Conf STERMAT'94, WislCa (October 3–6). Fotobit Design, Krakow, Poland, p. 249.

  18. J. CWAJNA, A. OLSZOWKA-MYALSKA, J. SZALA, Acta Stereol. 11 (1992) 431.

    Google Scholar 

  19. A. ROGERS, “Statistical Analysis of Spatial Dispersions” (The Quadrat Method. Pion, London, 1974).

    Google Scholar 

  20. K. J. KURZYDLOWSKI and B. RALPH, “The Quantitative Description of the Micro Structure of Materials” (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  21. P. GREIG-SMITH, Ann. Bot. 16 (1952) 293.

    Article  Google Scholar 

  22. J. T. CURTIS and R. P. MCLNTOSH, Ecology 31 (1950) 434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Sundberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundberg, G., Paul, P., Sung, C. et al. Fabrication of CuSiC metal matrix composites. J Mater Sci 41, 485–504 (2006). https://doi.org/10.1007/s10853-005-2622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2622-3

Keywords

Navigation