Skip to main content
Log in

Spatially Constrained Student’s t-Distribution Based Mixture Model for Robust Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The finite Gaussian mixture model is one of the most popular frameworks to model classes for probabilistic model-based image segmentation. However, the tails of the Gaussian distribution are often shorter than that required to model an image class. Also, the estimates of the class parameters in this model are affected by the pixels that are atypical of the components of the fitted Gaussian mixture model. In this regard, the paper presents a novel way to model the image as a mixture of finite number of Student’s t-distributions for image segmentation problem. The Student’s t-distribution provides a longer tailed alternative to the Gaussian distribution and gives reduced weight to the outlier observations during the parameter estimation step in finite mixture model. Incorporating the merits of Student’s t-distribution into the hidden Markov random field framework, a novel image segmentation algorithm is proposed for robust and automatic image segmentation, and the performance is demonstrated on a set of HEp-2 cell and natural images. Integrating the bias field correction step within the proposed framework, a novel simultaneous segmentation and bias field correction algorithm has also been proposed for segmentation of magnetic resonance (MR) images. The efficacy of the proposed approach, along with a comparison with related algorithms, is demonstrated on a set of real and simulated brain MR images both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abras, G.N., Ballarin, V.L.: A weighted k-means algorithm applied to brain tissue classification. J. Comput. Sci. Technol. 5(3), 121–126 (2005)

    Google Scholar 

  2. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy \(c\)-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  3. Banerjee, A., Maji, P.: Rough sets for bias field correction in MR images using contraharmonic mean and quantitative index. IEEE Trans. Med. Imaging 32(11), 2140–2151 (2013)

    Article  Google Scholar 

  4. Banerjee, A., Maji, P.: Rough sets and stomped normal distribution for simultaneous segmentation and bias field correction in brain MR images. IEEE Trans. Image Process. 24(12), 5764–5776 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banerjee, A., Maji, P.: Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Appl. Soft Comput. 46, 558–576 (2016)

    Article  Google Scholar 

  6. Bello, M.G.: A combined Markov random field and wave-packet transform-based approach for image segmentation. IEEE Trans. Image Process. 3(6), 834–846 (1994)

    Article  Google Scholar 

  7. Bergo, F.P.G., Falcão, A.X., Miranda, P.A.V., Rocha, L.M.: Automatic image segmentation by tree pruning. J. Math. Imaging Vis. 29(2), 141–162 (2007)

    Article  MathSciNet  Google Scholar 

  8. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36(2), 192–326 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B 48(3), 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4), 1033–1048 (1993)

    Article  Google Scholar 

  11. Brandt, M.E., Bohan, T.P., Kramer, L.A., Fletcher, J.M.: Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Comput. Med. Imaging Graph. 18, 25–34 (1994)

    Article  Google Scholar 

  12. Cagnoni, S., Coppini, G., Rucci, M., Caramella, D., Valli, G.: Neural network segmentation of magnetic resonance spin echo images of the brain. J. Biomed. Eng. 15(5), 355–362 (1993)

    Article  Google Scholar 

  13. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy \(c\)-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40, 825–838 (2007)

    Article  MATH  Google Scholar 

  14. Chang, J.C., Chou, T.: Iterative graph cuts for image segmentation with a nonlinear statistical shape prior. J. Math. Imaging Vis. 49(1), 87–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  16. Chen, X., Udupa, J.K., Bagci, U., Zhuge, Y., Yao, J.: Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans. Image Process. 21(4), 2035–2046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vis. 44(3), 375–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cyganek, B.: One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vis. 42(2), 103–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diplaros, A., Vlassis, N., Gevers, T.: A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans. Neural Netw. 18(3), 798–808 (2007)

    Article  Google Scholar 

  20. Foggia, P., Percannella, G., Soda, P., Vento, M.: Benchmarking HEp-2 cells classification methods. IEEE Trans. Med. Imaging 32(10), 1878–1889 (2013)

    Article  Google Scholar 

  21. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy \(c\)-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25(9), 1233–1245 (2006)

    Article  Google Scholar 

  23. Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16(3), 238–251 (1997)

    Article  Google Scholar 

  24. Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans. Neural Netw. 3(5), 672–682 (1992)

    Article  Google Scholar 

  25. Held, K., Kops, E.R., Krause, B.J., Wells III, W.M., Kikinis, R., Muller-Gartner, H.W.: Markov random field segmentation of brain MR images. IEEE Trans. Med. Imaging 16(6), 878–886 (1997)

    Article  Google Scholar 

  26. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  27. Kent, J.T., Tyler, D.E., Vard, Y.: A curious likelihood identity for the multivariate t-distribution. Comm. Stat. Simul. Comput. 23(2), 441–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krinidis, S., Chatzis, V.: A robust fuzzy local information \(c\)-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee, C., Huh, S., Ketter, T., Unser, M.: Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images. Comput. Biol. Med. 28(3), 309–338 (1998)

    Article  Google Scholar 

  30. Lempitsky, V., Blake, A., Rother, C.: Branch-and-mincut: global optimization for image segmentation with high-level priors. J. Math. Imaging Vis. 44(3), 315–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C.L., Goldgof, D.B., Hall, L.O.: Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Trans. Med. Imaging 12(4), 740–750 (1993)

    Article  Google Scholar 

  32. Li, F., Shen, C., Pi, L.: A new diffusion-based variational model for image denoising and segmentation. J. Math. Imaging Vis. 26(1), 115–125 (2006)

    Article  MathSciNet  Google Scholar 

  33. Li, H.D., Kallergi, M., Clarke, L.P., Jain, V.K., Clark, R.A.: Markov random field for tumor detection in digital mammography. IEEE Trans. Med. Imaging 14(3), 565–576 (1995)

    Article  Google Scholar 

  34. Li, Y., Chi, Z.: MR brain image segmentation based on self-organizing map network. Int. J. Inf. Technol. 11(8), 45–53 (2005)

    Google Scholar 

  35. Liang, Z., MacFall, J.R., Harrington, D.P.: Parameter estimation and tissue segmentation from multispectral MR images. IEEE Trans. Med. Imaging 13(3), 441–449 (1994)

    Article  Google Scholar 

  36. Liew, A.W.C., Yan, H.: An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans. Med. Imaging 22(9), 1063–1075 (2003)

    Article  Google Scholar 

  37. Liu, C., Dong, F., Zhu, S., Kong, D., Liu, K.: New variational formulations for level set evolution without reinitialization with applications to image segmentation. J. Math. Imaging Vis. 41(3), 194–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, J., Zhang, H.: Image segmentation using a local GMM in a variational framework. J. Math. Imaging Vis. 46(2), 161–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Maji, P., Kundu, M.K., Chanda, B.: Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images. Fundamenta Informaticae 88(1–2), 161–176 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Maji, P., Pal, S.K.: Rough set based generalized fuzzy \(c\)-means algorithm and quantitative indices. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(6), 1529–1540 (2007)

    Article  Google Scholar 

  41. Maji, P., Paul, S.: Rough-fuzzy clustering for grouping functionally similar genes from microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 286–299 (2013)

    Article  Google Scholar 

  42. Maji, P., Roy, S.: Rough-fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl. Soft Comput. 30, 705–721 (2015)

    Article  Google Scholar 

  43. Maji, P., Roy, S.: Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation. PLoS One 10(4), e0123,677 (2015). doi:10.1371/journal.pone.0123677

    Article  Google Scholar 

  44. Mangin, J.F., Frouin, V., Bloch, I., Rgis, J., Lpez-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)

    Article  Google Scholar 

  45. Manousakes, I.N., Undrill, P.E., Cameron, G.G.: Split and merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions. Comput. Biomed. Res. 31(6), 393–412 (1998)

    Article  Google Scholar 

  46. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE International Conference on Computer Vision, pp. 416–423 (2001)

  47. McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4(2), 73–91 (2000)

    Article  Google Scholar 

  48. Nguyen, T.M., Wu, Q.M.J.: A robust non-symmetric mixture models for image segmentation. In: Proceedings of the 19th IEEE International Conference on Image Processing (2012)

  49. Nguyen, T.M., Wu, Q.M.J.: Robust student’s-\(t\) mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)

    Article  Google Scholar 

  50. Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23(4), 621–635 (2013)

    Article  Google Scholar 

  51. Nguyen, T.M., Wu, Q.M.J., Ahuja, S.: An extension of the standard mixture model for image segmentation. IEEE Trans. Neural Netw. 21(8), 1326–1338 (2010)

    Article  Google Scholar 

  52. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  53. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  54. Peel, D., McLachlan, G.J.: Robust mixture modelling using the t-distribution. Stat. Comput. 10, 339–348 (2000)

    Article  Google Scholar 

  55. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

  56. Pi, L., Fan, J., Shen, C.: Color image segmentation for objects of interest with modified geodesic active contour method. J. Math. Imaging Vis. 27(1), 51–57 (2007)

    Article  MathSciNet  Google Scholar 

  57. Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., Deaton, R.J.: Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans. Med. Imaging 16(6), 911–918 (1997)

    Article  Google Scholar 

  58. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82, 42–56 (2001)

    Article  MATH  Google Scholar 

  59. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  60. Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47(3), 179–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sfikas, G., Nikou, C., Galatsanos, N.: Robust image segmentation with mixtures of students’s \(t\)-distribution. In: Proceedings of the IEEE International Conference on Image Processing, pp. 273–276 (2007)

  62. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Spatially varying mixtures incorporating line processes for image segmentation. J. Math. Imaging Vis. 36(2), 91–110 (2010)

    Article  MathSciNet  Google Scholar 

  63. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  64. Wang, X.Y., Bua, J.: A fast and robust image segmentation using FCM with spatial information. Digit. Signal Process. 20, 1173–1182 (2010)

    Article  Google Scholar 

  65. Wells III, W.M., Grimson, W.E.L., Kikins, R., Jolezs, F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15(8), 429–442 (1996)

    Article  Google Scholar 

  66. Xia, Y., Feng, D., Wang, T., Zhao, R., Zhang, Y.: Image segmentation by clustering of spatial patterns. Pattern Recognit. Lett. 28, 1548–1555 (2007)

    Article  Google Scholar 

  67. Xiao, K., Ho, S.H., Hassanien, A.E.: Automatic unsupervised segmentation methods for MRI based on modified fuzzy \(c\)-means. Fundamenta Informaticae 87(3–4), 465–481 (2008)

    MathSciNet  MATH  Google Scholar 

  68. Xiong, T., Yi, Z., Zhang, L.: Grayscale image segmentation by spatially variant mixture model with student’s \(t\)-distribution. Multimed. Tools Appl. 72(1), 167–189 (2014)

    Article  Google Scholar 

  69. Xiong, T., Zhang, L., Yi, Z.: Robust \(t\)-distribution mixture modeling via spatially directional information. Neural Comput. Appl. 24(6), 1269–1283 (2014)

    Article  Google Scholar 

  70. Yang, Z., Chung, F.L., Shitong, W.: Robust fuzzy clustering-based image segmentation. Appl. Soft Comput. 9, 80–84 (2009)

    Article  Google Scholar 

  71. Zhang, H., Wu, Q.M.J., Nguyen, T.M.: A robust fuzzy algorithm based on students t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20(2), 117–120 (2013)

    Article  Google Scholar 

  72. Zhang, H., Wu, Q.M.J., Nguyen, T.M.: Image segmentation by a new weighted student’s \(t\)-mixture model. IET Image Process. 7(3), 240–251 (2013)

    Article  MathSciNet  Google Scholar 

  73. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  74. Zhuge, Y., Udupa, J.K., Saha, P.K.: Vectorial scale-based fuzzy-connected image segmentation. Comput. Vis. Image Underst. 101, 177–193 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Department of Science and Technology, Government of India, New Delhi (grant no. SB/S3/EECE/050/2015), and the Department of Electronics and Information Technology, Government of India (grant no. PhD-MLA/4(90)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Maji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Maji, P. Spatially Constrained Student’s t-Distribution Based Mixture Model for Robust Image Segmentation. J Math Imaging Vis 60, 355–381 (2018). https://doi.org/10.1007/s10851-017-0759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0759-8

Keywords

Navigation