Skip to main content
Log in

Error Analysis in the Computation of Orthogonal Rotation Invariant Moments

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Orthogonal rotation invariant moments (ORIMs) are among the best region based shape descriptors. Being orthogonal and complete, they possess minimum information redundancy. The magnitude of moments is invariant to rotation and reflection and with some geometric transformation, they can be made translation and scale invariant. Apart from these characteristics, they are robust to image noise. These characteristics of ORIMs make them suitable for many pattern recognition and image processing applications. Despite these characteristics, the ORIMs suffer from many digitization errors, thus they are incapable of representing subtle details in image, especially at high orders of moments. Among the various errors, the image discretization error, geometric and numerical integration errors are the most prominent ones. This paper investigates the contribution and effects of these errors on the characteristics of ORIMs and performs a comparative analysis of these errors on the accurate computation of the three major ORIMs: Zernike moments (ZMs), Pseudo Zernike moments (PZMs) and orthogonal Fourier-Mellin moments (OFMMs). Detailed experimental analysis reveals some interesting results on the performance of these moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abu Mostofa, Y.S.: Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell 6(6), 698–706 (1984)

    Article  Google Scholar 

  2. Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Philol. Soc. 50, 40–48 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ghosal, S., Mehrotra, R.: Edge detection using orthogonal moment based operators. In: Proceedings of the 11th Image, Speech and Signal Analysis (IAPR), International Conference on Pattern Recognition, vol. 3, pp. 413–416 (1992)

    Google Scholar 

  4. Ghosal, S., Mehrotra, R.: Segmentation of range images on orthogonal moment based integrated approach. IEEE Trans. Robot. Autom. 9(4), 385–399 (1993)

    Article  Google Scholar 

  5. Haddadnia, J., Ahmadi, M., Raahemifar, K.: An effective feature extraction method for face recognition. In: Proceedings of 2003 International Conference on Image Processing, Spain, vol. 3, pp. 917–920 (2003)

    Google Scholar 

  6. Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  7. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kotoulas, L., Andreadis, I.: Accurate calculation of image moments. IEEE Trans. Image Process. 16(8), 2028–2037 (2007)

    Article  MathSciNet  Google Scholar 

  9. Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18, 254–266 (1996)

    Article  Google Scholar 

  10. Liao, S.X., Pawlak, M.: On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1358–1364 (1998)

    Article  Google Scholar 

  11. Lin, H., Si, J., Abousleman, G.P.: Orthogonal rotation invariant moments for digital image processing. IEEE Trans. Image Process. 17(3), 272–282 (2008)

    Article  MathSciNet  Google Scholar 

  12. Pang, Y.H., Andrew, T.B.J., David, N.C.L., Hiew, F.S.: Palmprint verifications with moments. J. WSCG 12, 1–3 (2003)

    Google Scholar 

  13. Pawlak, M.: Image Analysis by Moments: Reconstruction and Computational Aspects. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2006). Available freely at the site http://www.dbc.wroc.pl/dlibra/docmetadata?id=1432&from=&dirids=1

    Google Scholar 

  14. Ping, Z.L., Sheng, Y.L.: Image description with Chebyshev-Fourier moments. Acta Opt. Sin. 19(9), 1748–1754 (2002)

    MathSciNet  Google Scholar 

  15. Rajaraman, V.: Computer Oriented Numerical Methods, 3rd edn. Prentice Hall of India, New Delhi (2004)

    Google Scholar 

  16. Reichenbach, S.E., Geng, F.: Two-dimensional cubic convolution. IEEE Trans. Image Process. 12(8), 857–865 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ren, H., Liu, A., Zou, J., Bai, D., Ping, Z.: Character reconstruction with radial harmonic Fourier moments. In: Proc. of the 4th Int. Conf. on Fuzzy Systems and Knowledge Discovery 2007 (FSKD07), vol. 3, pp. 307–310 (2007)

    Google Scholar 

  18. Sheng, Y., Shen, L.: Orthogonal Fourier Mellin moments for invariant pattern recognition. IEEE Trans. J. Opt. Soc. Am. 11(6), 1748–1757 (1994)

    Article  Google Scholar 

  19. Singh, C., Pooja, S., Upneja, R.: On image reconstruction, numerical stability, and invariance of orthogonal radial moments and radial harmonic transforms. Pattern Recognit. Image Anal. 21(4), 663–676 (2011)

    Article  Google Scholar 

  20. Singh, C., Pooja, S.: Improving image retrieval using combined features of hough transform and Zernike moments. Opt. Lasers Eng. 49(12), 1384–1396 (2011)

    Article  Google Scholar 

  21. Singh, C., Upneja, R.: A computational model for enhanced accuracy of radial harmonic Fourier moments. In: World Congress of Engineering, London, U.K., pp. 1189–1194 (2012)

    Google Scholar 

  22. Singh, C., Upneja, R.: Accurate computation of orthogonal Fourier Mellin moments. J. Math. Imaging Vis. 44(3), 411–431 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Singh, C., Upneja, R.: Error analysis and accurate calculation of rotational moments. Pattern Recognit. Lett. 33, 1614–1622 (2012)

    Article  Google Scholar 

  24. Singh, C., Upneja, R.: Fast and accurate method for high order Zernike moments computation. Appl. Math. Comput. 218, 7759–7773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Singh, C., Walia, E.: Algorithms for fast computation of Zernike moments and their numerical stability. Image Vis. Comput. 29, 251–259 (2011)

    Article  Google Scholar 

  26. Singh, C., Walia, E.: Computation of Zernike moments in improved polar configuration. IET Image Process. 3(4), 217–227 (2009)

    Article  Google Scholar 

  27. Singh, C., Walia, E.: Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognit. 43, 2497–2506 (2010)

    Article  MATH  Google Scholar 

  28. Singh, C., Walia, E., Pooja, S., Upneja, R.: Analysis of algorithms for fast computation of pseudo Zernike moments and their numerical stability. Digit. Signal Process. 22(6), 1031–1043 (2012)

    Article  MathSciNet  Google Scholar 

  29. Singh, C., Walia, E., Upneja, R.: Accurate calculation of Zernike moments. Inf. Sci. 233(1), 255–275 (2013)

    Article  MathSciNet  Google Scholar 

  30. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  31. Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–513 (1988)

    Article  MATH  Google Scholar 

  32. Walia, E., Singh, C., Goyal, A.: On the fast computation of orthogonal Fourier-Mellin moments with improved numerical stability. J. Real-Time Image Process. 7(4), 247–256 (2012)

    Article  Google Scholar 

  33. Wee, C.Y., Paramseran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25, 967–980 (2007)

    Article  Google Scholar 

  34. Xin, Y., Liao, S., Pawlak, M.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognit. 40, 3740–3752 (2007)

    Article  MATH  Google Scholar 

  35. Xin, Y., Liao, S., Pawlak, M.: Geometrically robust image watermark via pseudo Zernike moments. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 939–942 (2004)

    Google Scholar 

  36. Xin, Y., Pawlak, M., Liao, S.: Accurate calculation of moments in polar co-ordinates. IEEE Trans. Image Process. 16, 581–587 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The useful comments and suggestions of the anonymous reviewers to raise the standard of the paper are highly appreciated. The research fellowship awarded to one of the authors (Rahul Upneja) by the Council of Scientific and Industrial Research (C.S.I.R.), Govt. of India, is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Singh.

Appendix

Appendix

1.1 A.1 Cubic Interpolation of Image Function

An image consisting of N×N pixels assumes that the pixel values f(i,k) are defined at the center of the pixel which occupies the area

$$\biggl[ x_{i} - \frac{\Delta x}{2},y_{k} - \frac{\Delta y}{2} \biggr] \times\biggl[ x_{i} + \frac{\Delta x}{2},y_{k} + \frac{\Delta y}{2} \biggr] $$

and has the center at (x i ,y k ) as shown in Fig. 1(a). The cubic interpolation assumes that the discrete data, which is converted into a continuous function, must be defined at the crossing of the grids which are given the name ‘nodes’ for further reference. Let the coordinates of nodes be denoted by (X i ,Y k ), which are given by

$$ \begin{aligned}[c] &X_{i} = \frac{2i - N}{N}, \\ & Y_{k} = \frac{2k - N}{N}, \quad i,k = 0,1,\ldots,N \end{aligned} $$
(32)

The cubic interpolation method requires the discrete values of the function at locations (X i ,Y k ), for i,k,=0,1,…,N, whereas the pixels are defined at pixel centers (x i ,y k ),i,k=0,1,…,N−1. Thus for an N×N image, there are (N+1)×(N+1) nodes at which the discrete values are required. A simple solution to this problem is to define a discrete function which is obtained by taking the average of pixel values meeting at a given node. Mathematically, we can obtain g(i,k) as follows

$$\begin{aligned} &g(i,k) = \frac{1}{S}\sum_{u = 0}^{1} \sum_{v = 0}^{1} f(i - u,k - v), \\ &\quad i,k = 0,1,2,\ldots, N \end{aligned}$$
(33)

where

$$\begin{aligned} &f(l,m) = 0,\quad\mbox{for}\ l = - 1,l = N,m = - 1,m = N,\quad\mbox{and} \\ & S = \begin{cases} 1,&\mbox{for corner nodes} \\ 2,&\mbox{for edge nodes} \\ 4,&\mbox{for interior nodes} \end{cases} \end{aligned}$$

After deriving g(i,k) the value of the image intensity can be obtained at a point (x,y)∈[x i ,y k ]×[x i+1,y k+1], i,k=0,1,…,N−1, as given below

$$ g(x,y) = \sum_{l = 0}^{3} \sum _{m = 0}^{3} a_{lm} x^{l}y^{m}, $$
(34)

where

$$ a_{mn} = \frac{1}{4\Delta^{6}}\sum_{r = 0}^{3} \sum_{s = 0}^{3} g(i + r - 1,k + s - 1) u_{rl}(x_{i})u_{sm}(y_{k}) $$
(35)

with

$$\Delta= \frac{2}{N} $$

The expressions u rl (x i ) and u sm (y k ) are given in [7]. The intensity function g(i,k) is derived for i,k=0,1,…,N as given by Eq. (33). However, Eq. (35) requires values for the extended grid which are determined by the procedure given in [7].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C., Upneja, R. Error Analysis in the Computation of Orthogonal Rotation Invariant Moments. J Math Imaging Vis 49, 251–271 (2014). https://doi.org/10.1007/s10851-013-0456-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0456-1

Keywords

Navigation