Skip to main content
Log in

A-contrario Detectability of Spots in Textured Backgrounds

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Using the a-contrario framework recently introduced in the modeling of human visual perception, we build a statistical model to predict the detectability of a spot on a textured background. Contrary to classical formalisms (ideal observer and its extensions), which assume a known probability distribution for the signal to be detected, the a-contrario observer we build only relies on gestalt-driven measurements and on an approximate representation of the background texture. It extends the scope of previous a-contrario detectors by using a non-i.i.d. naive model and a notion of local context. The models we propose are first validated theoretically in the case of powerlaw textures, which are, in particular, classical models for mammograms. Then, going to more general microtextures (colored noise processes), we compute the relationship between the size of a spot and the minimum contrast required to reach a given detectability threshold according to the a-contrario observer. Three main types of microtextures pop out from this characterization, and in particular low-frequency textures for which curiously enough, the contrast being given, the most salient spots are the smallest ones. Last, we illustrate the interest of the a-contrario observer for two real applications: the detectability of opacities in mammograms and the perception of stains on pieces of clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Gousseau, Y., Morel, J.-M.: The size of objects in natural and artificial images. Adv. Imaging Electron Phys. 111, 167–242 (1999)

    Google Scholar 

  2. Barrett, H.H., Yao, J., Rolland, J.P., Myers, K.J.: Model observers for assessment of image quality. Proc. Natl. Acad. Sci. USA 90, 9758–9765 (1993)

    Article  Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  5. Burgess, A.E.: Mammographic structures: data preparation and spatial statistics analysis. In: Hanson, K. (ed.) Medical Imaging 1998, Image Processing. Proceedings of the Society of Photo-optical Instrumentation Engineers, vol. 3661, pp. 642–653. Society of Photo Optical, San Diego (1998)

    Google Scholar 

  6. Burgess, A.E., Jacobson, F.L., Judy, P.F.: Human observer detection experiments with mammograms and power-law noise. Med. Phys. 28(4), 419–437 (2001)

    Article  Google Scholar 

  7. Burgess, A.E., Jacobson, F.L., Judy, P.F.: Lesion detection in digital mammograms. In: Proceedings of SPIE, Medical Imaging, vol. 4320, pp. 555–560. SPIE, Bellingham (2001)

    Google Scholar 

  8. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  9. Desolneux, A., Moisan, L., Morel, J.-M.: Edge detection by Helmholtz principle. J. Math. Imaging Vis. 14, 271–284 (2001)

    Article  MATH  Google Scholar 

  10. Desolneux, A., Moisan, L., Morel, J.-M.: Computational gestalts and perception thresholds. J. Physiology 97(2–3), 311–324 (2003). Paris, special issue on neurogeometry and visual perception

    Google Scholar 

  11. Desolneux, A., Moisan, L., Morel, J.-M.: In: From Gestalt Theory to Image Analysis—A Probabilistic Approach. Interdisciplinary Applied Mathematics, vol. 34. Springer, New York (2008)

    Google Scholar 

  12. Dibos, F., Pelletier, S., Koepfler, G.: Real-time segmentation of moving objects in a video sequence by a contrario detection. In: Proceedings of Int. Conf. Image Processing, vol. 1, pp. 1065–1068 (2005)

  13. Eckstein, M.P., Abbey, C.K., Bochud, F.O.: In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) A practical guide to model observers for visual detection in synthetic and natural noisy images. Handbook of Medical Imaging Physics and Psychophysics, pp. 593–628. SPIE Press, Bellingham (2000). Chap. 10

    Google Scholar 

  14. Gandhi, P.P., Kassam, S.A.: Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988)

    Article  Google Scholar 

  15. Grosjean, B., Muller, S., Souchay, H.: Lesion detection using an a-contrario detector in simulated digital mammograms. In: Proceedings of SPIE, Medical Imaging, vol. 6146, pp. 216–227. SPIE, Bellingham (2006)

  16. Heine, J.J., Velthuizen, R.P.: Spectral analysis of full field digital mammography data. Med. Phys. 29(5), 647–661 (2002)

    Article  Google Scholar 

  17. Kanizsa, G.: Grammatica del Vedere (La grammaire du voir, Diderot Editeur, Arts et Sciences, 1996). Il Mulino, Bologna (1980)

    Google Scholar 

  18. Kay, M.: Fundamentals of statistical signal processing. In: Detection Theory, vol. II. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  19. Khurd, P., Gindi, G.: Decision strategies that maximize the area under the LROC curve. IEEE Trans. Med. Imag. 24(12), 1626–1636 (2005)

    Article  Google Scholar 

  20. Kotre, C.J.: The effect of background structure on the detection of low contrast objects in mammography. Br. J. Radiol. 71, 1162–1167 (1998)

    Google Scholar 

  21. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004)

    Article  Google Scholar 

  22. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 28(1), 208–216 (1992)

    Article  Google Scholar 

  23. Rose, A.: Sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Am. 38, 196–208 (1948)

    Article  Google Scholar 

  24. Ruderman, D.: Origins of scaling in natural images. Vis. Res. 73(3), 814–817 (1996)

    Google Scholar 

  25. Swensson, R.G.: Using localization data from image interpretation to improve estimates of performance accuracy. Med. Decis. Mak. 20, 170–185 (2000)

    Article  Google Scholar 

  26. Tilie, S., Laborelli, L., Bloch, I.: A contrario false alarms removal for improving blotch detection in digitized films restoration. In: Proceedings of 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services—IWSSIP, pp. 410–413 (2007)

  27. Van Trees, H.L.: Detection, Estimation and Modulation Theory, Part 1. Wiley, New York (1968)

    Google Scholar 

  28. Veit, T., Cao, F., Boutemy, P.: An a-contrario decision framework for region-based motion detection. Int. J. Comput. Vis. 68(2), 163–178 (2006)

    Article  Google Scholar 

  29. Xue, F., Liu, Q., Froment, J.: An a-contrario approach for parameters estimation of a motion-blurred image. In: Lecture Notes in Computer Science, vol. 4679, pp. 267–279. Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Moisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosjean, B., Moisan, L. A-contrario Detectability of Spots in Textured Backgrounds. J Math Imaging Vis 33, 313–337 (2009). https://doi.org/10.1007/s10851-008-0111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0111-4

Keywords

Navigation