Skip to main content

Advertisement

Log in

23 Full factorial design for optimization of stable amorphous host–guest-based mirabegron complex for extended-release action

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The current study was to develop a stable amorphous mirabegron complex with improved solubility, stability, and extended-release of action. HPβCD was screened as a suitable complexing agent, which exhibited an entrapment efficiency of 91.2 ± 3.4% and facilitated transformation of drug into the amorphous state. The addition of ethylcellulose extended the release of the complex by 81.4 ± 2.8% for 12 h. The influence of HPβCD and ethyl cellulose on the crystal habit of mirabegron was analyzed by XRPD, DSC, ATR FTIR and morphological behavior were analyzed by SEM. 23 Full factorial design was used to optimize the mirabegron complex. The outcomes of stability studies illustrated amorphous complex was stable for 6 months at long-term and accelerated storage conditions, where content uniformity came under the accepted range of 98–102%. Thus, HPβCD-based inclusion complex represents a futuristic approach to design mirabegron formulation with improved solubility and extended-release of action in over active bladder syndrome.

Graphic abstract

Host-guest complex of HPβCD and mirabegron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

β-CD:

β-Cyclodextrin

HPβCD:

2-Hydroxypropyl-β-cyclodextrin

BHT:

Butylated hydroxytoluene

PVPK-30:

Polyvinyl pyrrolidone K-30

EC:

Ethyl cellulose

DoE:

Design of experiments

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

SEM:

Scanning electron microscopy

HPLC:

High-performance liquid chromatography

ATR FTIR:

Attenuated total reflectance Fourier transform infrared spectroscopy

DSC:

Differential scanning calorimetry

RH:

Relative humidity

References

  1. Surwase, S.A., Itkonen, L., Aaltonen, J., Saville, D., Rades, T., Peltonen, L., Strachan, C.J.: Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. Eur. J. Pharm. Biopharm. 96, 32–43 (2015). https://doi.org/10.1016/j.ejpb.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  2. Martínez, L.M., Videa, M., Silva, T.L., Castro, S., Caballero, A., Lara-Díaz, V.J., Castorena-Torres, F.: Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur. J. Pharm. Biopharm. 119, 243–252 (2017). https://doi.org/10.1016/j.ejpb.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  3. Mesallati, H., Conroy, D., Hudson, S., Tajber, L.: Preparation and characterization of amorphous ciprofloxacin-amino acid salts. Eur. J. Pharm. Biopharm. 121, 73–89 (2017). https://doi.org/10.1016/j.ejpb.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  4. Pokharkar, V.B., Mandpe, L.P., Padamwar, M.N., Ambike, A.A., Mahadik, K.R., Paradkar, A.: Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 167(1), 20–25 (2006). https://doi.org/10.1016/j.powtec.2006.05.012

    Article  CAS  Google Scholar 

  5. Laitinen, R., Löbmann, K., Strachan, C.J., Grohganz, H., Rades, T.: Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 453(1), 65–79 (2013). https://doi.org/10.1016/j.ijpharm.2012.04.066

    Article  CAS  PubMed  Google Scholar 

  6. Yu, L.: Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48(1), 27–42 (2001). https://doi.org/10.1016/S0169-409X(01)00098-9

    Article  CAS  PubMed  Google Scholar 

  7. Sherje, A.P., Surve, A., Shende, P.: CDI cross-linked β-cyclodextrin nanosponges of paliperidone: synthesis and physicochemical characterization. J. Mater. Sci. Mater. Med. 30(6), 74 (2019). https://doi.org/10.1007/s10856-019-6268-0

    Article  CAS  PubMed  Google Scholar 

  8. Tyagi, P., Tyagi, V., Chancellor, M.: Mirabegron: a safety review. Expert Opin. Drug Saf. 10(2), 287–294 (2011). https://doi.org/10.1517/14740338.2011.542146

    Article  CAS  PubMed  Google Scholar 

  9. An, J.H., Lim, C., Kiyonga, A., Chung, I., Lee, I., Mo, K., Park, M., Youn, W., Choi, W., Suh, Y.G., Jung, K.: Co-amorphous screening for the solubility enhancement of poorly water-soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics 10(3), 1–14 (2018). https://doi.org/10.3390/pharmaceutics10030149

    Article  CAS  Google Scholar 

  10. Shende, P.K., Gaud, R.S., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin-and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B 136, 105–110 (2015). https://doi.org/10.1016/j.colsurfb.2015.09.002

    Article  CAS  Google Scholar 

  11. Ramazani, A., Rezaei, M.: RP-HPLC method development and validation for the quantitative estimation of mirabegron in extended-release tablets. J. Med. Chem. Sci. 1(2), 36–40 (2018). https://doi.org/10.26655/JMCHEMSCI.2018.9.5

    Article  Google Scholar 

  12. Guideline, I.H.T.: Stability testing of new drug substances and products. Q1A (R2), current step, 4, 1–24 (2003)

  13. Malanga, M., Szemán, J., Fenyvesi, É., Puskás, I., Csabai, K., Gyémánt, G., Fenyvesi, F., Szente, L.: ‘Back to the future’: a new look at hydroxypropyl beta-cyclodextrins. J. Pharm. Sci. 105(9), 2921–2931 (2016). https://doi.org/10.1016/j.xphs.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  14. Srihakulung, O., Maezono, R., Toochinda, P., Kongprawechnon, W., Intarapanich, A.: Host–guest interactions of plumbagin with β-cyclodextrin, dimethyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin: semi-empirical quantum mechanical PM6 and PM7 methods. Sci. Pharm. 86(2), 20 (2018). https://doi.org/10.3390/scipharm86020020

    Article  CAS  PubMed Central  Google Scholar 

  15. Shende, P.K., Trotta, F., Gaud, R.S., Deshmukh, K., Cavalli, R., Biasizzo, M.: Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 447–454 (2012). https://doi.org/10.1007/s10847-012-0140-x

    Article  CAS  Google Scholar 

  16. Mukne, A.P., Nagarsenker, M.S.: Triamterene-β-cyclodextrin systems: preparation, characterization and in vivo evaluation. AAPS PharmSciTech 5(1), 142 (2004). https://doi.org/10.1208/pt050119

    Article  PubMed Central  Google Scholar 

  17. Mura, P., Adragna, E., Rabasco, A.M., Moyano, J.R., Perez-Martinez, J.I., Arias, M.J., Gines, J.M.: Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev. Ind. Pharm. 25(3), 279–287 (2019). https://doi.org/10.1081/DDC-100102172

    Article  Google Scholar 

  18. Liu, J., Qiu, L., Gao, J., Jin, Y.: Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 312(1–2), 137–143 (2006). https://doi.org/10.1016/j.ijpharm.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  19. Eid, E.E., Abdul, A.B., Suliman, F.E.O., Sukari, M.A., Rasedee, A., Fatah, S.S.: Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbo. Polym. 83(4), 1707–1714 (2011). https://doi.org/10.1016/j.carbpol.2010.10.033

    Article  CAS  Google Scholar 

  20. Fini, A., Ospitali, F., Zoppetti, G., Puppini, N.: ATR/Raman and fractal characterization of HPBCD/progesterone complex solid particles. Pharm. Res. 25(9), 2030–2040 (2008). https://doi.org/10.1007/s11095-008-9593-4

    Article  CAS  PubMed  Google Scholar 

  21. Williams III, R.O., Mahaguna, V., Sriwongjanya, M.: Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Biopharm. 46(3), 355–360 (1998). https://doi.org/10.1016/j.jiec.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  22. Yehye, W.A., Rahman, N.A., Ariffin, A., Hamid, S.B.A., Alhadi, A.A., Kadir, F.A., Yaeghoobi, M.: Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur. J. Med. Chem. 101, 295–312 (2015). https://doi.org/10.1016/j.ejmech.2015.06.026

    Article  CAS  PubMed  Google Scholar 

  23. Katikaneni, P.R., Upadrashta, S.M., Neau, S.H., Mitra, A.K.: Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int. J. Pharm. 123(1), 119–125 (1995). https://doi.org/10.1016/0378-5173(95)00060-V

    Article  CAS  Google Scholar 

  24. Desai, J., Alexander, K., Riga, A.: Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308(1–2), 115–123 (2006). https://doi.org/10.1016/j.jhazmat.2018.02.053

    Article  CAS  PubMed  Google Scholar 

  25. Jaria, G., Silva, C.P., Oliveira, J.A., Santos, S.M., Gil, M.V., Otero, M., Calisto, V., Esteves, V.I.: Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water-A full factorial design. J. Hazard. Mater. 370, 212–218 (2019). https://doi.org/10.1016/j.jhazmat.2018.02.053

    Article  CAS  PubMed  Google Scholar 

  26. Bhavsar, M.D., Tiwari, S.B., Amiji, M.M.: Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release 110(2), 422–430 (2006). https://doi.org/10.1016/j.jconrel.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Burrows, N.D., Harvey, S., Idesis, F.A., Murphy, C.J.: Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33(8), 1891–1907 (2016)

    Article  Google Scholar 

  28. Goldsmith, S., McDowell, A.: Designing a formulation of the nootropic drug aniracetam using 2-hydroxypropyl-β-cyclodextrin suitable for parenteral administration. Pharmaceutics 10(4), 240 (2018). https://doi.org/10.3390/pharmaceutics10040240

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

Funding

No funding has been received for writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest. No financial interest or benefit has arisen from the direct applications of research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandpe, P., Prabhakar, B. & Shende, P. 23 Full factorial design for optimization of stable amorphous host–guest-based mirabegron complex for extended-release action. J Incl Phenom Macrocycl Chem 96, 111–123 (2020). https://doi.org/10.1007/s10847-019-00955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00955-1

Keywords

Navigation