Skip to main content
Log in

Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: the role of carboxyl terminal groups in the particle size and morphology

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work the effect of the synthesis conditions on the size and morphology of the nanoparticles obtained via the reduction of silver ions by benzyl alcohol in the presence of carboxylated methoxypolyethylene glycols with different molecular weights (mPEG-COOH 350, containing a terminal carboxyl group, MW ~ 350 and 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEAA), MW ~ 200) and non-carboxylated mPEG 350 has been studied. The synthesized nanoparticles were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Ultraviolet–Visible (UV–Vis) and Fourier-transform infrared (FT-IR) spectroscopy. The synthesis conditions resulting in the formation of silver nanoparticles stabilized by MEEAA and mPEG-COOH with the average sizes of 6.5 ± 1.1 and 5.2 ± 0.9 nm, respectively, which can be used for the fabrication of ink compositions for flexible electronics, were found. A thermogravimetric (TG) study showed that MEEAA and mPEG-COOH are removed from the surface of the silver nanoparticles at temperatures of 110–300 and 200–310 °C, respectively. Thus, according to the TG data, the particles stabilized by MEEAA can potentially be used in the fabrication of inks for printing on low-temperature polymer substrates. The as-synthesized nanoparticles form a stable dispersion and therefore are suitable for possible applications in printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.: Inkjet printing—process and its applications. Adv. Mater. 22, 673–685 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Tekin, E., Smith, P.J., Schubert, U.S.: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703–713 (2008)

    Article  CAS  Google Scholar 

  3. Aleeva, Y., Pignataro, B.: Recent advances in upscalable wet methods and ink formulations for printed electronics. J. Mater. Chem. C 2, 6436–6453 (2014)

    Article  CAS  Google Scholar 

  4. Kamyshny, A., Magdassi, S.: Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M., Abdollahi, Y.: Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 13, 6639–6650 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alagamuthu, G., Kirubha, R.: Synthesis and characterization of silver nanoparticles in different media. Open J. Synth. Theory Appl. 1(267–275), 13–17 (2012)

    Article  CAS  Google Scholar 

  7. Khademalrasool, M., Farbod, M.: A simple and high yield solvothermal synthesis of uniform silver nanowires with controllable diameters. J. Nanostruct. 5, 415–422 (2015)

    Google Scholar 

  8. Zhao, T., Sun, R., Yu, Sh, Zhang, Zh, Zhou, L., Huang, H., Du, R.: Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids Surf. A 336, 197–202 (2010)

    Article  CAS  Google Scholar 

  9. Titkov, A.I., Bulina, N.V., Ulihin, A.S., Shundrina, I.K., Karpova, E.V., Gerasimov, EYu., Yukhin, YuM, Lyakhov, N.Z.: N-Lauroylsarcosine capped silver nanoparticle based inks for flexible electronics. J. Mater. Sci.: Mater. Electron. 28(2), 2029–2036 (2017)

    CAS  Google Scholar 

  10. Titkov, A.I., Shundrina, I.K., Gadirov, R.M., Odod, A.V., Kurtsevich, A.E., Yukhin, YuM, Lyakhov, N.Z.: Thermal and laser sintering of a highly stable inkjet ink consisting of silver nanoparticles stabilized by a combination of a short chain carboxylic acid and a polymeric dispersant. Mater. Today Proc. 5, 6042–16050 (2018)

    Google Scholar 

  11. Titkov, A.I., Bukhanets, O.G., Gadirov, R.M., Yukhin, YuM, Lyakhov, N.Z.: Conductive inks for inkjet printing based on composition of nanoparticles and organic silver salt. Inorg. Mater. Appl. Res. 6, 375–381 (2015)

    Article  Google Scholar 

  12. Fereshteh, Z., Rojaee, R., Sharifnabi, A.: Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method. Superlattices Microstruct. 98, 267–275 (2016)

    Article  CAS  Google Scholar 

  13. Diaz-Cruz, C., Alonso Nunez, G., Espinoza-Gomez, H., Flores-Lopez, L.Z.: Effect of molecular weight of PEG or PVA as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur. Polym. J. 83, 265–277 (2016)

    Article  CAS  Google Scholar 

  14. Shkilnyy, A., Soucé, M., Dubois, P., Warmont, F., Saboungi, M.L., Chourpa, I.: Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Analyst 134, 1868–1872 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Fleitas-Salazar, N., Silva-Campa, E., Pedroso-Santana, S., Tanori, J., Pedroza-Montero, M.R., Riera, R.: Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism. J. Nanopart. Res. 19, 113 (2017)

    Article  CAS  Google Scholar 

  16. Popa, M., Pradell, T., Crespo, D., Calderón-Moreno, J.M.: Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf. A 303, 184–190 (2007)

    Article  CAS  Google Scholar 

  17. Luo, C., Zhang, Y., Zeng, X., Zeng, Y., Wang, Y.: The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Šimáková, P., Gautier, J., Procházka, M., Hervé-Aubert, K., Chourpa, I.: Polyethylene-glycol-stabilized Ag nanoparticles for surface-enhanced Raman scattering spectroscopy: Ag surface accessibility studied using metalation of free-base porphyrins. J. Phys. Chem. C 118, 7690–7697 (2014)

    Article  CAS  Google Scholar 

  19. Illés, E., Tombácz, E., Szekeres, M., Tóth, I.Y., Szabó, Á., Iván, B.: Novel carboxylated PEG-coating on magnetite nanoparticles designed for biomedical applications. J. Magn. Magn. Mater. 380, 132–139 (2015)

    Article  CAS  Google Scholar 

  20. Guerrini, L., Alvarez-Puebla, R.A., Pazos-Perez, N.: Surface modifications of nanoparticles for stability in biological fluids. Materials 11, 1154 (2018)

    Article  PubMed Central  Google Scholar 

  21. US Patent 6239252B1, Lele, B.S., Kulkarni, M.G.: Single step process for the preparation of poly(oxyalkylene) alpha, omega-dicarboxylic acid (2001)

  22. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  23. Ankireddy, K., Vunnam, S., Kellar, J., Cross, W.: Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications. J. Mater. Chem. C 1, 572 (2013)

    Article  CAS  Google Scholar 

  24. Deacon, G.B., Phillips, R.J.: Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 33, 227–250 (1980)

    Article  CAS  Google Scholar 

  25. Han, S., Kim, C., Kwon, D.: Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 38, 317–323 (1997)

    Article  CAS  Google Scholar 

  26. Xu, R., Wang, D., Zhang, J., Li, Y.: Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 1, 888–893 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Jia, F.L., Zhang, L.Z., Shang, X.Y., Yan, Y.: Non-aqueous sol-gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater. 20, 1050–1054 (2008)

    Article  CAS  Google Scholar 

  28. Yanez-Vilar, S., Sanchez-Andujar, M., Gomez-Aguirre, C., Mira, J., Senaris-Rodriguez, M.A., Castro-Garcia, S.: A simple solvothermal synthesis of MFe2O4 (M = Mn, Co and Ni) nanoparticles. J. Solid State Chem. 182, 2685–2690 (2009)

    Article  CAS  Google Scholar 

  29. Yukhin, YuM, Titkov, A.I., Logutenko, O.A., Mishchenko, K.V., Lyakhov, N.Z.: Metal extracts as precursors for the production of metal powders and coatings via the extraction-pyrolytic method. Russ. J. Gen. Chem. 87, 2807–2874 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Logutenko.

Additional information

The present authors would like to dedicate this article and express many thanks to Professor Karsten Gloe who contributed immensely to the development and application of selective complexation reactions for solvent extraction processes. In this area, Karsten made many friends in Russia and, in particular, in Siberia. His Russian friends Igor Fleitlikh, Vera Belova, Anatoliy Ivanovich Kholkin always enjoyed a simulating and fruitful collaboration with Prof. Gloe while researching extraction during the late 1980s. They love to recall their meetings with Karsten at various scientific conferences in Russia (Moscow and Novosibirsk) and Germany (Holzhau), as well as their joint work at Novosibirsk Academgorodok, including the Russian-German seminar held in the distant (remote) Siberian town Shushenskoye (Krasnoyarsk Region). Dear Karsten, on our own behalf and on behalf of all your Russian friends we congratulate you on your anniversary, wish you a long life and strong Siberian health.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titkov, A.I., Logutenko, O.A., Gerasimov, E.Y. et al. Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: the role of carboxyl terminal groups in the particle size and morphology. J Incl Phenom Macrocycl Chem 94, 287–295 (2019). https://doi.org/10.1007/s10847-019-00921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00921-x

Keywords

Navigation