Skip to main content
Log in

Adsorption of phenol onto surfactants modified bentonite

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Bentonite was modified with hexadecyltrimethylammonium bromide or bencylhexadecyldimethylammonium chloride. Phenol adsorption kinetic and isotherms experiments were performed; in both cases, phenol was determined in the aqueous solutions by UV–Vis spectroscopy. The results showed that the adsorption of phenol depends on the kind of surfactant, and pH of the solutions. The adsorption was higher for the clay modified with bencylcetyldimethylammonium chloride than hexadecyltrimethylammonium bromide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmaruzzaman, M., Sharm, D.K.: Adsorption of phenols from wastewater. J. Colloid Interface Sci. 287, 14–24 (2005)

    Article  CAS  Google Scholar 

  2. HuH, J.K., Song, D.I., Jeon, Y.W.: Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model. Sep. Sci. Technol. 35, 243–259 (2000)

    Article  CAS  Google Scholar 

  3. Mohd, R., Othman, S., Rokiah, H., Anees, A.: Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010)

    Article  Google Scholar 

  4. Amit, B.: Removal of bromophenols from water using industrial wastes as low cost adsorbents. J. Hazard. Mater. B 139, 93–102 (2007)

    Article  Google Scholar 

  5. Cortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V., Alfaro-Cuevas, V.R.: Sorption behavior of 4-chlorophenol from aqueous solutions by a surfactant-modified Mexican zeolitic rock in batch and fixed bed systems. Water Air Soil Pollut. 183, 85–94 (2007)

    Article  Google Scholar 

  6. Gupta, K.V., Srivastava, K.S., Tyagi, R.: Design parameters for treatmente of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res. 34, 1543–1550 (2000)

    Article  CAS  Google Scholar 

  7. Eren, E.: Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. J. Hazard. Mater. 165, 63–70 (2009)

    Article  CAS  Google Scholar 

  8. Hu, B., Luo, H.: Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide. Appl. Surf. Sci. 257, 769–775 (2010)

    Article  CAS  Google Scholar 

  9. Richards, S., Bouazza, A.: Phenol adsorption in organo-modified basaltic clay and bentonite. Appl. Clay Sci. 37, 133–142 (2007)

    Article  CAS  Google Scholar 

  10. Smith, J.A., Jaffé, P.R., Chiou, C.T.: Effect on ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environ. Sci. Technol. 24, 1167–1172 (1990)

    Article  CAS  Google Scholar 

  11. Lizhong, Z., Xiaogang, R., Shaobin, Y.: Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ. Sci. Technol. 32, 3374–3378 (1998)

    Article  Google Scholar 

  12. Juang, R.S., Lin, S.H., Tsao, K.H.: Sorption of phenols from water in column systems using surfactant-modified montmorillonite. J. Colloid Interface Sci. 269, 46–52 (2004)

    Article  CAS  Google Scholar 

  13. Sprynskyya, M., Ligora, T., Lebedynets, M., Buszewski, B.: Kinetic and equilibrium studies of phenol adsorption by natural and modified forms of the clinoptilolite. J. Hazard. Mater. 169, 847–854 (2009)

    Article  Google Scholar 

  14. Garcia, J.E., Gonzalez, M.M., Notario, J.S.: Phenol adsorption on natural phillipsite. React. Polym. 21, 171–176 (1993)

    Article  CAS  Google Scholar 

  15. Wibulswas, R., White, D.A., Rautiutran, R.: Adsorption of phenolic compounds from water by surfactant-modified pillared clays. Process Saf. Environ. Prot. 77, 88–92 (1999)

    Article  CAS  Google Scholar 

  16. Zaghouane-Boudiaf, H., Boutahala, M.: Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated montmorillonite from aqueous solution. Int. J. Miner. Process. 100, 72–78 (2011)

    Article  CAS  Google Scholar 

  17. Park, Y., Ayoko, G.A., Frost, R.L.: Characterisation of organoclays and adsorption of p-nitrophenol: environmental application. J. Colloid Interface Sci. 360, 440–456 (2011)

    Article  CAS  Google Scholar 

  18. Zhu, J., Wang, T., Zhu, R., Ge, F., Wei, J., Yuan, P., He, H.: Novel polymer/surfactant modified montmorillonite hybrids and the implications for the treatment of hydrophobic organic compounds in wastewaters. Appl. Clay Sci. 51, 317–322 (2011)

    Article  CAS  Google Scholar 

  19. Juang, R.S., Lin, S.H., Tsao, K.H.: Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. J. Colloid Interface Sci. 254, 234–241 (2002)

    Article  CAS  Google Scholar 

  20. Senturka, H.B., Ozdesa, D., Gundogdua, A., Durana, C., Soylakb, M.: Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J. Hazard. Mater. 172, 353–362 (2009)

    Article  Google Scholar 

  21. Alkaram, U.F., Mukhlis, A.A., Al-Dujaili, A.H.: The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 169, 324–332 (2009)

    Article  CAS  Google Scholar 

  22. Ming, D., Allen, E., Galindo, C., Henninger, D.: Methods for determining cation exchange capacities and composition of native cations for clinoptilolite. In: Memories of the 3rd International Conference on the Occurrence, Properties and Utilization of Natural Zeolites. Cuba, 31–35 (1995)

  23. Sun-Kou, M.R., Volzone, C., Sapag, K.: Las arcillas y sus diferentes aplicaciones en adsorción. In: Rodríguez, F. (ed.) Adsorbentes en la solución de algunos problemas ambientales, Red Temática V F: Red Iberoamericana de adsorbentes para la protección ambiental. Madrid, España (2004)

    Google Scholar 

  24. Yapar, S., Yilmaz, M.: Removal of phenol by using montmorillonite, clinoptilolite and hydrotalcite. Adsorption 10, 287–298 (2004)

    Article  CAS  Google Scholar 

  25. Sabah, E., Çelik, M.S.: Adsorption mechanism of quaternary amines by sepiolite. Sep. Sci. Technol. 37, 3081–3097 (2002)

    Article  CAS  Google Scholar 

  26. Li, Z.: Oxyanion sorption and surface anion exchange by surfactant-modified clay minerals. J. Environ. Qual. 28, 1457–1463 (1999)

    Article  CAS  Google Scholar 

  27. Zhang, Z.Z., Sparks, D.L., Scrivner, N.C.: Sorption and desorption of quaternary amine cations on clays. Environ. Sci. Technol. 27, 1625–1631 (1993)

    Article  CAS  Google Scholar 

  28. Gates, W.P., Teppen, B.J., Bertzsch, P.M., Aiken, S.C.: Sorption of aromatics in the interlayer space of organo-clays. Schriftenr. Angew. Geowiss. 1, 41–48 (1997)

    Google Scholar 

  29. Zhu, L., Chen, B., Shen, X.: Sorption of phenol, ρ-nitrophenol and aniline to dual-cation organobentonites from water. Environ. Sci. Technol. 34, 468–475 (2000)

    Article  CAS  Google Scholar 

  30. Li, Z., Burt, T., Bowman, R.S.: Sorption of ionizable organic solutes by surfactant-modified zeolite. Sci. Technol. 34, 3756–3760 (2000)

    Article  CAS  Google Scholar 

  31. Dentel, S.K., Bottero, J.Y., Khatib, K., Demougeot, H., Duguet, J.P., Anselme, C.: Sorption of tannic acid, phenol and 2,4,5-trichlorophenol on organoclays. Water Res. 29, 1273–1280 (1995)

    Article  CAS  Google Scholar 

  32. Stapleton, M.G., Sparks, D.L., Dentel, S.K.: Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH. Environ. Sci. Technol. 28, 2330–2335 (1994)

    Article  CAS  Google Scholar 

  33. Lagergren, S.: Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenka Vetenskapsakademiens Handlingar 24, 1–39 (1898)

    Google Scholar 

  34. Ho, Y.S.: Pseudo-isoterms using a second order kinetic expression constant. Adsorption 10, 151–158 (2004)

    Article  CAS  Google Scholar 

  35. Chien, S.H., Clayton, W.R.: Application of Elovich equation to the kinetics of phosphate release and sorption on soils. Soil Sci. Am. J. 44, 265–268 (1980)

    Article  CAS  Google Scholar 

  36. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  37. Haggerty, G.M., Bowman, R.S.: Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 28, 452–458 (1994)

    Article  CAS  Google Scholar 

  38. Ho, S., Huang, C.T., Huang, H.W.: Equilibrium sorption isotherms for metal ions on tree fern. Process Biochem. 37, 1421–1430 (2002)

    Article  CAS  Google Scholar 

  39. Demirbaz, O., Alkan, M., Dogan, M.: The removal of victoria blue from aqueous solutions by adsorption on a low-cost material. Adsorption 8, 341–349 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by CONACYT (Project 131174-Q) and they are also grateful to technician from Chemistry Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Nava, M.C., Olguín, M.T. & Solache-Ríos, M. Adsorption of phenol onto surfactants modified bentonite. J Incl Phenom Macrocycl Chem 74, 67–75 (2012). https://doi.org/10.1007/s10847-011-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0084-6

Keywords

Navigation