Skip to main content
Log in

Interactions of cyclodextrins with aromatic amino acids: a basis for protein interactions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrins (CyD) have proven effects on the stability of proteins and can be used in the formulation of aggregation prone therapeutic proteins. This effect stems from specific interactions between the CyD (preferably β-CyD) and solvent exposed amino acid residues. Here the interaction with hydrophobic aromatic amino acid residues stands out and the interaction between CyDs and these amino acid residues holds the key to understanding the observed effects, which CyDs exerts on proteins and peptides. Here we present a comparative study of the interactions between free and peptide bound aromatic amino acids and their derivatives with α, β and γ-CyDs using NMR spectroscopy. We propose a novel, quantitative means of assessing the penetration depth of guest molecules in CyD cavities, the penetration gauge Π, and apply it to the observed interaction patterns from ROESY NMR spectra. We demonstrate that the penetration depths of the aromatic rings within the CyDs rely highly on the nature of the remainder of the guest molecule. Thus the presence of charges, neighboring amino acids and the specific positioning on the surface of a protein highly influences the penetration depth and geometry of guest–CyD interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Branchu, S., Forbes, R.T., York, P., Nyqvist, H.: The Effect of Cyclodextrins in Monomere Protein Unfolding. Biocalorimetry Applications of Calorimetry in the Biological Sciences, vol. 1. Wiley, West Sussex (1998)

    Google Scholar 

  2. Cooper, A.: Effect of cyclodextrins on the thermal stability of globular protein. J. Am. Chem. Soc. 114(23), 9208–9209 (1992)

    Article  CAS  Google Scholar 

  3. Cooper, A., McAuley-Hecht, K.E.: Microcalorimetry and the molecular recognition of peptides and proteins. Philos. Trans. R. Soc. A 345, 23–35 (1993)

    Article  CAS  Google Scholar 

  4. Brewster, M.E., Hora, M.S., Simpkins, J.W., Boder, N.: Use of 2-hydroxypropyl-beta-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs. Pharm. Res. 8, 792–795 (1991)

    Article  CAS  Google Scholar 

  5. Charman, S.A., Mason, K.L., Charman, W.N.: Techniques for assessing the effects of pharmaceutical excipients in the aggregation of porcine growth hormone. Pharm. Res. 10, 954–961 (1993)

    Article  CAS  Google Scholar 

  6. Izutsu, K.-L., Yoshioka, S., Terao, T.: Stabilization of beta-galactosidase by amphiphilic additives during freeze-drying. Int. J. Pharm. 90, 187–194 (1993)

    Article  CAS  Google Scholar 

  7. Karuppiah, N., Sharma, A.: Cyclodextrin as protein folding aids. Biochem. Biophys. Res. Commun. 211(1), 60–66 (1995)

    Article  CAS  Google Scholar 

  8. Katakam, M., Banga, A.K.: Aggregation of proteins and its prevention by carbohydrate excipients: albumins and gamma-globulin. J. Pharm. Pharmacol. 47, 103–107 (1995)

    Article  CAS  Google Scholar 

  9. Lee, M.-J., Fennema, O.R.: Ability of cyclodextrins to inhibit aggregation of beta-casein. J. Agric. Food Chem. 39, 17–21 (1991)

    Article  CAS  Google Scholar 

  10. Sigurjónsdóttir, J.F., Loftsson, T., Másson, M.: Influence of cyclodextrins on the stability of the peptide salmon calcitonin in aqueous solution. Int. J. Pharm. 186, 205–213 (1998)

    Article  Google Scholar 

  11. Linde, G.A., Laverde, A., de Faria, E.V., Colauto, N.B., de Moraes, F.F., Zanin, G.M.: Taste modification of amino acids and protein hydrolysate by alpha-cyclodextrin. Food Res. Int. 42(7), 814–818 (2009)

    Article  CAS  Google Scholar 

  12. Linde, G.A., Laverde, A., De Faria, E.V., Colauto, N.B., De Moraes, F.F., Zanin, G.M.: The use of 2D NMR to study beta-cyclodextrin complexation and debittering of amino acids and peptides. Food Res. Int. 43(1), 187–192 (2010)

    Article  CAS  Google Scholar 

  13. Yamamoto, T., Fukui, N., Hori, A., Matsui, Y.: Circular dichroism and fluorescence spectroscopy studies of the effect of cyclodextrins on the thermal stability of chicken egg white lysozyme in aqueous solution. J. Mol. Struct. 782(1), 60–66 (2006). doi:10.1016/j.molstruc.2005.01.024

    Article  CAS  Google Scholar 

  14. Yoshikiyo, K., Takeshita, R., Yamamoto, T., Takahashi, T., Matsui, Y.: The effects of cyclodextrins on the thermal denaturation and renaturation processes of bovine pancreatic ribonuclease A in an aqueous solution studied by circular dichroism and fluorescence spectroscopy. J. Mol. Struct. 832(1–3), 96–100 (2007)

    Article  CAS  Google Scholar 

  15. Otzen, D.E., Knudsen, B.R., Aachmann, F., Larsen, K.L., Wimmer, R.: Structural basis for cyclodextrins’ suppression of human growth hormone aggregation. Prot. Sci. 11(7), 1779–1787 (2002)

    Article  CAS  Google Scholar 

  16. Aachmann, F.L., Otzen, D.E., Larsen, K.L., Wimmer, R.: Structural background of cyclodextrin–protein interactions. Prot. Eng. 16(12), 905–912 (2003)

    Article  CAS  Google Scholar 

  17. Matilainen, L., Larsen, K.L., Wimmer, R., Keski-Rahkonen, P., Auriola, S., Jarvinen, T., Jarho, P.: The effect of cyclodextrins on chemical and physical stability of glucagon and characterization of glucagon/gamma-CD inclusion complexes. J. Pharm. Sci. 97(7), 2720–2729 (2008)

    Article  CAS  Google Scholar 

  18. Creighton, T.E.: Proteins: structures and molecular properties, 2nd edn. W. H. Freeman and Company, New York (1993)

    Google Scholar 

  19. Bartels, C., Xia, T.-H., Billeter, M., Günter, P., Wüthrich, K.: The program XEASY for computer supported NMR spectral of biological macromolecules. J. Biomol. NMR 5, 1–10 (1995)

    Article  Google Scholar 

  20. Szejtli, J.: In: Szejtli, J., Osa, T. (eds.) Comprehensive Supramolecular Chemistry, vol. 3. Pergamon, Exeter, UK (1996)

  21. Inoue, Y., Hoshi, H., Sakurai, M., Chujo, R.: Geometry of cyclohexaamylase inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts. J. Am. Chem. Soc. 107, 2319–2323 (1985)

    Article  CAS  Google Scholar 

  22. Inoue, Y., Okuda, T., Miyata, Y., Chujo, R.: N.M.R. Studies of cycloamylose inclusion-complexes with p-substituted phenols. Carbohydr. Res. 125, 65–76 (1984)

    Article  CAS  Google Scholar 

  23. Komiyama, M., Harai, H.: Carbon-13 NMR study on the cyclodextrin inclusion complexes in solution. Bull. Chem. Soc. Jpn. 54(3), 828–831 (1981)

    Article  CAS  Google Scholar 

  24. Hamilton, J.A., Sabesan, M.N., Steirauf, L.K., Geddes, A.: The crystal structure of a complex of cycloheptaamylose with 2,5-diiodobenzoic acid. Biochem. Biophys. Res. Commun. 73, 659–664 (1976)

    Article  CAS  Google Scholar 

  25. Lipkowitz, K.N., Raghothama, S., Yang, J.: Enantioselective binding of tryptophan by alfa-cyclodextrin. J. Am. Chem. Soc. 114, 1554–1562 (1992)

    Article  CAS  Google Scholar 

  26. Kahle, C., Holzgrabe, U.: Determination of binding constants of cyclodextrin inclusion complexes with amino acids and dipeptides by potentiometric titration. Chirality 16(8), 509–515 (2004)

    Article  CAS  Google Scholar 

  27. Hembury, G., Rekharsky, M., Nakamura, A., Inoue, Y.: Direct correlation between complex conformation and chiral discrimination upon inclusion of amino acid derivatives by beta- and gamma-cyclodextrins. Org. Lett. 2(21), 3257–3260 (2000)

    Article  CAS  Google Scholar 

  28. Horský, J., Pitha, J.: Inclusion complexes of proteins: interaction of cyclodextrins with peptides containing aromatic amino acids studied by competitive spectrophotometry. J. Incl. Phenom. Mol. 18, 291–300 (1994)

    Article  Google Scholar 

  29. Mrozek, J., Banecki, B., Karolczak, J., Wiczk, W.: Influence of the separation of the charged groups and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with beta-cyclodextrin. Biophys. Chem. 116(3), 237–250 (2005)

    Article  CAS  Google Scholar 

  30. Waibel, B., Scheiber, J., Meier, C., Hammitzsch, M., Baumann, K., Scriba, G.K.E., Holzgrabe, U.: Comparison of cyclodextrin-dipeptide inclusion complexes in the absence and presence of urea by means of capillary electrophoresis, nuclear magnetic resonance and molecular modeling. Eur. J. Org. Chem. 18, 2921–2930 (2007)

    Google Scholar 

  31. Bekos, E.J., Gardella, J.A., Bright, F.V.: The binding of free oligopeptides to cyclodextrins: the role of the tyrosine group. J. Incl. Phenom. Mol. 26(4), 185–195 (1996)

    Article  CAS  Google Scholar 

  32. Camilleri, C., Haskins, N.J., New, A.P., Saunders, M.R.: Analysing the complexation of amino acids and peptides with beta-cyclodextrin using electrospray ionization mass spectrometry. Rapid Commun. Mass. Spec. 7, 949–952 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FLA thanks KMB project (182695/I40), Norwegian Research Council for financial support. The NMR laboratory at Aalborg University is supported by the Obel Foundation. We would to thank Kate Bowman for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Wimmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aachmann, F.L., Larsen, K.L. & Wimmer, R. Interactions of cyclodextrins with aromatic amino acids: a basis for protein interactions. J Incl Phenom Macrocycl Chem 73, 349–357 (2012). https://doi.org/10.1007/s10847-011-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0071-y

Keywords

Navigation