Skip to main content
Log in

Physicochemical characterization of terbinafine-cyclodextrin complexes in solution and in the solid state

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Terbinafine (TB) is an allylamine derivative used as oral and topical antifungal agent. The physicochemical properties of the complexes between TB and different cyclodextrins (CDs): α-CD, β-CD, hydroxypropylβ-CD, methylβ-CD and γ-CD, have been studied in pH 12 aqueous solutions at 25 °C and in the solid state. Different phase solubility profiles of TB in the presence of CDs have been obtained: AL type for TB with hydroxypropylβ-CD and γ-CD, AP type for the complexes with methylβ-CD and α-CD, while a BS profile was found for TB-β-CD. The apparent stability constants of the complexes were calculated at 25 °C from the phase solubility diagrams. The higher increase of TB solubility, up to 200-fold, together with the higher value of the stability constant were found for the complex with methylβ-CD. Solid systems of 1:1 drug:CD molar ratio were prepared and characterised using X-ray diffraction patterns, thermal analysis and FTIR spectroscopy. The coevaporation method can be considered the best method in preparing these solid complexes. The complexes of TB with natural CDs, except with α-CD, were crystalline, whereas the methyl and hydroxypropyl derivatives gave rise to amorphous phases. Dissolution rate studies have been performed with TB-β-CD and TB-HPβ-CD complexes, showing a positive influence of complexation on the drug dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balfour, J.A., Faulds, D.: Terbinafine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in superficial mycoses. Drugs 43(2), 259–284 (1992)

    Article  CAS  Google Scholar 

  2. Schuster, I., Ryder, N.S.: Allylamines—mode and selectivity of action compared to azole antifungals and biological fate in mammalian organisms. J. Dermatol. Treat. 1(2), 7–9 (1990)

    Article  Google Scholar 

  3. Hector, R.F.: An overview of antifungal drugs and their use for treatment of deep and superficial mycoses in animals. Clin. Tech. Small Anim. Pract. 20, 240–249 (2005)

    Article  Google Scholar 

  4. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  5. Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)

    Article  CAS  Google Scholar 

  6. Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005)

    Article  CAS  Google Scholar 

  7. Uekama, K.: Recents aspects of pharmaceutical application of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 44, 3–7 (2002)

    Article  CAS  Google Scholar 

  8. Szeman, J., Ueda, H., Szejtli, J., Fenyvesi, E., Watanabe, Y., Machida, Y., Nagai, T.: Enhanced percutaneous absorption of homogenized tolnaftate/β-cyclodextrin polymer ground mixture. Drug Des. Deliv. 1, 325–332 (1987)

    CAS  Google Scholar 

  9. Tenjarla, S., Puranajoti, P., Kasina, R., Mandal, T.: Preparation, characterization, and evaluation of miconazole-cyclodextrin complexes for improved oral and topical delivery. J. Pharm. Sci. 87(4), 425–429 (1998)

    Article  CAS  Google Scholar 

  10. Ahmed, M.O., El-Gibaly, I., Ahmed, S.M.: Effect of cyclodextrins on the physicochemical properties and antimycotic activity of clotrimazole. Int. J. Pharm. 171, 111–121 (1998)

    Article  CAS  Google Scholar 

  11. Taneri, F., Güneri, T., Aigner, Z., Erös, I., Kata, M.: Improvement of the physicochemical properties of clotrimazole by cyclodextrin complexation. J. Incl. Phenom. Macrocycl. Chem. 46, 1–13 (2003)

    Article  CAS  Google Scholar 

  12. Taneri, F., Güneri, T., Aigner, Z., Berkesi, O., Kata, M.: Thermoanalytical studies on complexes of clotrimazole with cyclodextrins. J. Therm. Anal. Calorim. 76, 471–479 (2004)

    Article  CAS  Google Scholar 

  13. Taneri, F., Güneri, T., Aigner, Z., Kata, M.: Improvement of the physicochemical properties of ketoconazole through complexation with cyclodextrin derivatives. J. Incl. Phenom. Macrocycl. Chem. 44, 257–260 (2002)

    Article  CAS  Google Scholar 

  14. Taneri, F., Güneri, T., Aigner, Z., Kata, M.: Influence of cyclodextrin complexation on the physicochemical and biopharmaceutical properties of ketoconazole. J. Incl. Phenom. Macrocycl. Chem. 47, 15–23 (2003)

    Article  CAS  Google Scholar 

  15. Taraszewska, J., Kozbial, M.: Complexation of ketoconazol by native and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 53, 155–161 (2005)

    Article  CAS  Google Scholar 

  16. Miyake, K., Irie, T., Arima, H., Hirayama, F., Uekama, K., Hirano, M., Okamoto, Y.: Characterization of itraconazole/2-hydroxypropyl-β-cyclodextrin inclusion complex in aqueous propylene glycol solution. Int. J. Pharm. 179, 237–245 (1999)

    Article  CAS  Google Scholar 

  17. Brewster, M.E., Vandecruys, R., Peeters, J., Neeskens, P., Verreck, G., Loftsson, T.: Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: phase solubility-behaviour and stabilization of supersaturated drug solutions. Eur. J. Pharm. Sci. 34, 94–103 (2008)

    Article  CAS  Google Scholar 

  18. Mura, P., Faucci, M.T., Manderioli, A., Bramanti, G.: Influence of the preparation method on the physicochemical properties of binary systems of econazole with cyclodextrins. Int. J. Pharm. 193, 85–95 (1999)

    Article  CAS  Google Scholar 

  19. Faucci, M.T., Melani, F., Mura, P.: 1NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J. Pharm. Biomed. Anal. 23, 25–31 (2000)

    Article  CAS  Google Scholar 

  20. Al-Marzouqi, A.H., Elwy, H.M., Shehadi, I., Adem, A.: Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharm. Biomed. Anal. 49, 227–233 (2009)

    Article  CAS  Google Scholar 

  21. Denadai, A.M.L., Teixeira, K.I., Santoro, M.M., Pimenta, A.M.C., Cortés, M.E., Sinisterra, R.D.: Supramolecular self-assembly of β-cyclodextrin: an effective carrier of the antimicrobial agent clorhexidine. Carbohydr. Res. 342, 2286–2296 (2007)

    Article  CAS  Google Scholar 

  22. Fouda, M.M.G., Knittel, D., Hipler, U.-C., Elsner, P., Schollmeyer, E.: Antimycotic influence of β-cyclodextrin complexes—in vitro measurements using laser nephelometry in microtiter plates. Int. J. Pharm. 311, 113–121 (2006)

    Article  CAS  Google Scholar 

  23. Noomen, A., Hbaieb, S., Parrot-Lopez, H., Kalfat, R., Fessi, H., Amdouni, N., Chevalier, Y.: Emulsions of β-cyclodextrins grafted to silicone for the transport of antifungal drugs. Mater. Sci. Eng. C 28, 705–715 (2008)

    Article  CAS  Google Scholar 

  24. Uzqueda, M., Martín, C., Zornoza, A., Sánchez, M., Martínez-Ohárriz, M.C., Vélaz, I.: Characterization of complexes between naftifine and cyclodextrins in solution and in the solid state. Pharm. Res. 23(5), 980–988 (2006)

    Article  CAS  Google Scholar 

  25. Connors, K.A.: Binding constants. The measurement of molecular complex stability. Wiley, New York (1987)

    Google Scholar 

  26. González-Gaitano, G., Rodríguez, P., Isasi, J.R., Fuentes, M., Sánchez, M.: The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 44, 101–105 (2002)

    Article  Google Scholar 

  27. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  28. Madrid, J.M., Pozuelo, J., Mendicuti, F., Matice, W.L.: Molecular mechanics study of the inclusion complexes of 2-methyl naphthoate with α- and β-cyclodextrins. J. Colloid Interface Sci. 193, 112–120 (1997)

    Article  CAS  Google Scholar 

  29. Estrada, E., Perdomo-López, I., Torres-Labandeira, J.J.: Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of α- and β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41(6), 1561–1568 (2001)

    CAS  Google Scholar 

  30. Szente, L.: Preparation of cyclodextrin complexes. In: Szejtli, J., Osa, T. (eds.) Comprehensive supramolecular chemistry Vol 3. Cyclodextrins, pp. 243–252. Elsevier Science Ltd., Oxford (1996)

    Google Scholar 

  31. Hasimoto, H.: Preparation, structure, property and application of branched cyclodextrins. In: Duchêne, D. (ed.) New trends in cyclodextrins and derivatives, pp. 99–156. Editions de Santé, Paris (1991)

    Google Scholar 

  32. Liu, L., Zhu, S.: Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 40, 122–127 (2006)

    Article  CAS  Google Scholar 

  33. Hunt, M.A., Rusa, C.C., Tonelli, A.E., Balik, C.M.: Structure and stability of columnar cyclomaltohexaose (α-cyclodextrin) hydrate. Carbohydr. Res. 339, 2805–2810 (2004)

    Article  CAS  Google Scholar 

  34. Rusa, C.C., Bullions, T.A., Fox, J., Porbeni, F.E., Wang, X., Tonelli, A.E.: Inclusion compound formation with a new columnar cyclodextrin host. Langmuir 18, 10016–10023 (2002)

    Article  CAS  Google Scholar 

  35. Takeo, K., Kuge, T.: Complexes of starchy materials with organic compounds. Part III. X-ray studies on amylase and cyclodextrin complexes. Agric. Biol. Chem. 33(8), 1174–1180 (1969)

    CAS  Google Scholar 

  36. Hunt, M.A., Rusa, C.C., Tonelli, A.E., Balik, C.M.: Structure and stability of columnar cyclomaltooctaose (γ-cyclodextrin) hydrate. Carbohydr. Res. 340, 1631–1637 (2005)

    Article  CAS  Google Scholar 

  37. Harata, K.: Crystallographic studies. In: Szejtli, J., Osa, T. (eds.) Comprehensive supramolecular chemistry Vol 3. Cyclodextrins, pp. 279–304. Elsevier Science Ltd., Oxford (1996)

    Google Scholar 

  38. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.H., Takaha, T.: Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)

    Article  CAS  Google Scholar 

  39. Cappello, B., Di Maio, C., Iervolino, M.: Investigation on the interaction of bendazac with β-, hydroxypropyl-β- and γ-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 43, 251–257 (2002)

    Article  CAS  Google Scholar 

  40. Alberti, I., Kalia, Y.N., Naik, A., Bonny, J.D., Guy, R.H.: In vivo assessment of enhanced topical delivery of terbinafine to human stratum corneum. J. Control. Rel. 71, 319–327 (2001)

    Article  CAS  Google Scholar 

  41. Ruan, L.P., Yu, B.Y., Fu, G.M., Zhu, D.N.: Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J. Pharm. Biomed. Anal. 38, 457–464 (2005)

    Article  CAS  Google Scholar 

  42. Mura, P., Zerrouk, N., Mennini, N., Maestrelli, F., Chemtob, C.: Development and characterization of naproxen-chitosan solid systems with improved drug dissolution properties. Eur. J. Pharm. Sci. 19, 67–75 (2003)

    Article  CAS  Google Scholar 

  43. Craig, D.Q.M.: The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 231, 131–144 (2002)

    Article  CAS  Google Scholar 

  44. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Comisión Interministerial de Ciencia y Tecnología (Project MAT2003-08390-C02-01) for financial support and to Gobierno de Navarra for M. Uzqueda’s grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itziar Vélaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzqueda, M., Martín, C., Zornoza, A. et al. Physicochemical characterization of terbinafine-cyclodextrin complexes in solution and in the solid state. J Incl Phenom Macrocycl Chem 66, 393–402 (2010). https://doi.org/10.1007/s10847-009-9656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9656-0

Keywords

Navigation