Skip to main content
Log in

Parameter Self-Optimizing Clustering for Autonomous Extraction of the Weld Seam Based on Orientation Saliency in Robotic MAG Welding

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an effective method which needs free parameters as little as possible to autonomously extract the weld seam profile and edges from the molten background in two kinds of weld images within robotic MAG welding. First, orientation saliency detection produced by Gabor filtering nicely highlights the weld seam profile and edges from the molten background. Then, an unsupervised clustering algorithm combing a cluster validity index via an optimization rule, referred to as parameter self-optimizing clustering, is applied to discern the weld seam profile and edges from interference data after the orientation saliency detection result is given threshold segmentation. The validity index is better than the classical ones in two kinds of data sets through considerable tests. Last, two common applications of weld seam identification demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Gao, X.: Analysis of characteristics of molten pool using cast shadow during high-power disk laser welding. Int. J. Adv. Manuf. Technol. 70(9–12), 1979–1988 (2014)

    Article  Google Scholar 

  2. Xu, Y., Zhong, J., Ding, M., Chen, H., Chen, S.: The acquisition and processing of real-time information for height tracking of robotic GTAW process by arc sensor. Int. J. Adv. Manuf. Technol. 65 (5–8), 1031–1043 (2013)

    Article  Google Scholar 

  3. Ye, Z., Fang, G., Chen, S., Zou, J.: Passive vision based seam tracking system for pulse-MAG welding. Int. J. Adv. Manuf. Technol. 67(9–12), 1987–1996 (2013)

    Article  Google Scholar 

  4. Fernandez, V., Acevedo, R., Alvarez, A., Lopez, A., Garcia, D., Fernandez, R., Meana, M., Sanchez, J.: Low-cost system for weld tracking based on artificial vision. IEEE Trans. Indus. App. 47(3), 1159–1167 (2011)

    Article  Google Scholar 

  5. Nele, L., Sarno, E., Keshari, A.: An image acquisition system for real-time seam tracking. Int. J. Adv. Manuf. Technol. 66(9–12), 2099–2110 (2013)

    Article  Google Scholar 

  6. Zhang, L., Wei, K., Han, Z., Jiao, J.: A cross structured light sensor for weld line detection on wall-climbing robot. In: Proceedings of 2013 IEEE International conference on mechatronics and automation. Takamatsu, Japan, pp. 1179–1184 (2013)

  7. Zhang, L., Ye, Q., Yang, W., Jiao, J.: Weld line detection and tracking via spatial-temporal cascaded hidden Markov models and cross structured light. IEEE Trans. Instrum. Meas. 63(4), 742–753 (2014)

    Article  Google Scholar 

  8. Huang, Y., Xiao, Y., Wang, P., Li, M.: A seam-tracking laser welding platform with 3D and 2D visual information fusion vision sensor system. Int. J. Adv. Manuf. Technol. 67, 415–426 (2013)

    Article  Google Scholar 

  9. Xu, Y., Fang, G., Chen, S., Zou, J., Ye, Z.: Real-time image processing for vision-based weld seam tracking in robotic GMAW. Int. J. Adv. Manuf. Technol. 73(9), 1413–1425 (2014)

    Article  Google Scholar 

  10. Usamentiaga, R., Molleda, J., García, D.: Fast and robust laser stripe extraction for 3D reconstruction in industrial environments. Mach. Vision Appl. 23, 179–196 (2012)

    Article  Google Scholar 

  11. Gu, W., Xiong, Z., Wan, W.: Autonomous seam acquisition and tracking system for multi -pass welding based on vision sensor. Int. J. Adv. Manuf. Technol. 69, 451–460 (2013)

    Article  Google Scholar 

  12. Nguyen, H., Lee, B.: Laser-vision-based quality inspection system for small bead laser welding. Int. J. Precis. Eng. Manuf. 15(3), 415–423 (2014)

    Article  Google Scholar 

  13. Chen, H., Liu, W., Huang, L., Xing, G., Wang, M., Sun, H.: The decoupling visual feature extraction of dynamic three-dimensional V-type seam for gantry welding robot. Int. J. Adv. Manuf. Technol. 80, 1741–1749 (2015)

    Article  Google Scholar 

  14. He, Y., Chen, Y., Xu, Y., Huang, Y., Chen, S.: Autonomous Detection of Weld Seam Profiles via a Model of Saliency-Based Visual Attention for Robotic Arc Welding. J. Intell. Robot Syst., Published online: 28 March 2015. doi:10.1007/s10846-015-0226-y (2015)

  15. He, Y., Xu, Y., Chen, Y., Chen, H., Chen, S.: Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Robot. Comput. Integr. Manuf. 37, 251–261 (2016)

    Article  Google Scholar 

  16. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  17. Jain, A., Topchy, A., Law, M., Buhmann, J.: Landscape of clustering algorithms. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, vol. 1, pp. 260–263 (2004)

  18. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Series B (Methodological) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, pp. 226–231 . AAAI Press (1996)

  20. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. In: Proceeding of the ACM SIGMOD International Conference on Management of Data. Seattle, Washington, pp. 94–105 (1998)

  21. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  22. Karypis, G., Han, E., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32, 68–75 (1999)

    Article  Google Scholar 

  23. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

    Article  Google Scholar 

  24. Lu, S., Fu, K.: A sentence-to-sentence clustering procedure for pattern analysis. IEEE Trans. Syst. Man Cyb. 8, 381–389 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Informa. Process. Lett 76, 175–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hubert, L.: Some applications of graph theory to clustering. Psychometrika 39, 283–309 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  28. Pal, N., Biswas, J.: Cluster validation using graph theoretic concepts. Pattern Recognit. 30, 847–857 (1997)

    Article  Google Scholar 

  29. Hanwell, D., Mirmehdi, M.: QUAC: Quick unsupervised anisotropic clustering. Pattern Recognit. 47, 427–440 (2014)

    Article  Google Scholar 

  30. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46, 243–256 (2013)

    Article  Google Scholar 

  31. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  32. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nishida, T.: An application of P system: a new algorithm for NP-complete optimization problems. In: Proceedings of 8th World Multi-Conference on Systems, Cybernetics and Information. Orlando, Florida, pp. 109–112 (2004)

  35. Nishida, T.: An approximate algorithm for NP-complete optimization problems exploiting P systems, pp. 185–192 (2004)

  36. žalik, K.: Cluster validity index for estimation of fuzzy clusters of different sizes and densities. Pattern Recognit. 43, 3374–3390 (2010)

    Article  MATH  Google Scholar 

  37. Kim, M., Ramakrishna, R.: New indices for cluster validity assessment. Pattern Recognit. Lett. 26(15), 2353–2363 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinshui He or Shanben Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, H., Huang, Y. et al. Parameter Self-Optimizing Clustering for Autonomous Extraction of the Weld Seam Based on Orientation Saliency in Robotic MAG Welding. J Intell Robot Syst 83, 219–237 (2016). https://doi.org/10.1007/s10846-015-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0331-y

Keywords

Navigation