Skip to main content
Log in

Assisted Navigation for Persons with Reduced Mobility: Path Recognition Through Particle Filtering (Condensation Algorithm)

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the few past decades, several international researchers have worked to develop intelligent wheelchairs for the people with reduced mobility. For many of these projects, the structured set of commands is based on a sensor-based command. Many types of commands are available but the final decision is to be made by the user. A former work established a behaviour-based multi-agent form of control ensuring that the user selects the best option for him/her in relation to his/her preferences or requirements. This type of command aims at “merging” this user and his/her machine—a kind of symbiotic relationship making the machine more amenable and the command more effective. In this contribution, the approach is based on a curve matching procedure to provide comprehensive assistance to the user. This new agent, using a modelization of the paths that are most frequently used, assists the user during navigation by proposing the direction to be taken when the path has been recognized. This approach will spare the user the effort of determining a new direction—which might be a major benefit in the case of severe disabilities. The approach considered uses particle filtering to implement the recognition of the most frequent paths according to a topological map of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pruski, A., Ennaji, M., Morère, Y.: Vahm: a user adapted intelligent wheelchair. In: IEEE Conference on Control Application, Glasgow, Scotland, UK (2002)

  2. Simpson, R.: Smart wheelchairs: a literature review. J. Rehabil. Res. Dev. 42(4), 423–436 (2005)

    Article  Google Scholar 

  3. Pruski, A., Ennaji, M., Morère, Y.: VAHM: un fauteuil intelligent adapté à l’utilisateur. In: Compte-rendu de la Conférences Handicap 2002, Paris: Handicap 2002, 13–14 Juin 2002

    Google Scholar 

  4. Bourhis, G., Horn, O., Habert, O., Pruski, A.: The VAHM project: autonomous vehicle for people with motor disabilities. IEEE Robot. Autom. Mag. 7(1), 21–28 (2001) (Special Issue on ‘Research on Autonomous Robotics Wheelchair in Europe’)

    Google Scholar 

  5. Bell, D., Borenstein, J., Levine, S., Koren, Y., Jaros, L.: An assistive navigation system for wheelchair based upon mobile robot obstacle avoidance. In: IEEE Robotics and Automation, San Diego (1994)

  6. Röfer, T.: Routemark-based navigation of a wheelchair. In: Proceedings of the 3rd ECPD International Conference on Advanced Robotics, Intelligent Automation and Active Systems, pp. 333–338 (1997)

  7. Boy, E., Teo, C., Burdet, E.: Collaborative wheelchair assistant. In: IEEE/RJS International Conference on Robotics and Intelligent Systems (IROS), Lausanne, Suisse, vol. 30, pp. 1511–1516 (2002)

  8. Del Castillo Del Riego, G.: Autonomous, vision-based, pivoting wheelchair with obstacle detection capability. Ph.D. dissertation, University of Notre Dame (2004)

  9. Schilling, K., Roth, H., Lieb, R., Stützle, H.: Sensors to improve the safety of wheelchair user. In: Improving the quality of life for the European citizens, vol. 4, pp. 331–335. IOS, Fairfax (1998)

    Google Scholar 

  10. Adachi, Y., Kuno, Y., Shimada, N., Shirai, Y.: Intelligent wheelchair using visual information on human faces. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robot an Systems (IROS), vol. 13, pp. 354–359. IEEE, Victoria, BC, Canada (1998)

    Google Scholar 

  11. Prassler, E., Scholz, J., Fiorini, P.: A robotic wheelchair roaming in a railway station. In: Proc. Int. Conf. Field and Service Robotics, Pittsburgh, pp. 31–36 (1999)

  12. Pires, G., Aradjo, R., Nunes, U., De Almeida, A.: Robchair—a powered wheelchair using a behaviour-based navigation. In: 5th International Workshop on Advenced Motion Control (ACM’98-Coimba), vol. 29, pp. 536–541. IEEE, Coimbra (1998)

    Google Scholar 

  13. Patel, S., Jung, S., Ostrowski, J., Rao, R., Taylor, C.: Sensor bseed door navigation for a nonholomic vehicle. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA), pp. 3081–3086. IEEE, Washington, DC (2002)

    Google Scholar 

  14. Mallet, P., Schöner, G.: WAD project where attractor dynamics aids wheelchair navigation. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 690–695. IEEE, Lausanne (2002)

    Chapter  Google Scholar 

  15. Matsumoto, Y., Ino, T., Ogsawara, T.: Development of Intelligent wheelchair system with face and gaze based interface. In: Proceedings of the 10th IEEE International Workshop on Robot an Human Intereactive Communication 2001, pp. 262–267. IEEE, Bordeaux, France (2001)

    Google Scholar 

  16. Sahnoun, M., Fattouh, A., Bourhis, G.: Assisted control for powered wheelchair with a force feedback joystick. In: Alain Pruski, H.K. (ed.) Assistive Technology: From Virtuality to Reality. Association for the Advancement of Assistive Technology in Europe (AAATE 2005), pp. 601–605. IOS, Fairfax (2005)

    Google Scholar 

  17. Pruski, A., Habert, O., Ennaji, M.: Symbiotic man-machine architecture for a smart wheelchair control. In: 6th Conf. for the Advancement of Assistive Technology, AAATE 2001, Ljubljana, Slovenia, pp. 216–221 (2001)

  18. Connell, J., Viola, P.: Cooperative control of a semi-autonomous mobile robot. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1118–1121, 13–18 May 1990

  19. Bourhis, G., Pino, P.: Mobile robotic and mobility assistance for people with motor impairments: rational justification of the VAHM project. IEEE Trans. Rehabil. Eng. 4(1), 7–12 (1996)

    Article  Google Scholar 

  20. Levine, S., Bell, D., Jaros, A., Simpsons, R., Koren, Y., Borenstein, J.: The NavChair assistive wheelchair navigation system. IEEE Trans. Rehabil. Eng. 7(4), 443–451 (1999)

    Article  Google Scholar 

  21. Borgolte, V., Hoyer, H., Buhler, C., Heck, C., Hoelper, R.: Architectural concept of semi-autonomous wheelchair. J. Intell. Robot. Syst. 22, 233–253 (1998)

    Article  Google Scholar 

  22. Beattie, P.: SENARIO: SENsor Aided intelligent wheelchaiR navigatiOn. In: IEE Colloquium on New Developments in Electric Vehicles for Disabled Persons, London, UK, vol. 17, pp. 2/1–2/4 (1995)

  23. Simpson, R., LoPresti, E., Hayashi, S., Nourbakshs, I., Miller, D.: The smart wheelchair component system. J. Rehabil. Res. Dev. 41(3B), 429–442 (2004)

    Article  Google Scholar 

  24. Simpson, R., LoPresti, E., Hayashi, S., Guo, S., Frisch, R., Martin, A., Ammer, W., Ding, D., Cooper, R.: The smart power assistance module for manual wheelchairs. In: Proceedings Of CWUAAT ’04, vol. 24, pp. 51–54. Cambridge, UK (2004)

    Google Scholar 

  25. Simpson, R., Poirot, D., Baxter, F.: The Hephaestus smart wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 10(2), 122–125 (2002)

    Article  Google Scholar 

  26. Miller, D., Slack, M.: Increasing access with a low-cost robotic wheelchair. In: Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems ’94. Advanced Robotic Systems and the Real World, vol. 3, pp. 1663–1667. Munich, Allemagne (1994)

    Google Scholar 

  27. Mazo, M.: An integral system for assisted mobility [automated wheelchair]. IEEE Robot. Autom. Mag. 8(1), 46–56 (2001)

    Article  Google Scholar 

  28. Vlassis, N., Sgouros, N., Efthivoulidis, G., Papakonstantinou, G., Tsanakas, P.: Global path planning for autonomous qualitative navigation. In: Proc. 8th IEEE Int. Conf. on Tools with AI (1996)

  29. Balcells, A., Gonzalez, J.: TetraNauta: a wheelchair controller for user with very severe mobility restrictions. In: Proceedings of the CSUN (California State University, Northridge)—Technology and Persons with Disabilites Conference, Los Angeles, US (1998)

  30. Gomi, T., Griffith, A.: Developing intelligent wheelchairs for the handicapped, vol. 1458. Springer, New York (1998)

    Google Scholar 

  31. Brooks, R.: How to build complete creatures rather than isolated cognitive simulators. Ser. Architectures for Intelligence, pp. 225–239. Lawrence Erlbaum Associates, Hillsdale (1991)

    Google Scholar 

  32. Simpson, R.C., Levine, S.: Automatic adaptation in the NavChair assistive wheelchair navigation system. In: IEEE Trans. Rehabil. Eng. 7(4), 452–463 (1999)

  33. Berthoz, A.: Parietal and hippocampal contribution to topokinetic and topographic memory. Philos. Trans. R. Soc. Lond. B 352, 1437–1448 (1997)

    Article  Google Scholar 

  34. Habert, O., Pruski, A.: Raisonnement à partir de cas pour le contrôle d’un fauteuil électrique. JESA 34(6–7), 765–782 (2000)

    Google Scholar 

  35. Filliat, D., Meyer, J.-A.: Map-based navigation in mobile robots: I. A review of localization strategies. Cogn. Syst. Res. 4(4), 243–282 (2003). doi:10.1016/S1389-0417(03)00008-1

    Article  Google Scholar 

  36. Meyer, J.-A., Filliat, D.: Map-based navigation in mobile robots:: Ii. a review of map-learning and path-planning strategies. Cogn. Syst. Res. 4(4), 283–317 (2003). doi:10.1016/S1389-0417(03)00007-X

    Article  Google Scholar 

  37. Crowley, J.L.: World modeling and position estimation for a mobile robot using ultrasonic ranging. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 674–680 (1989). citeseer.ist.psu.edu/crowley89world.html

  38. Arras, K., Tomaris, N., Jensen, B., Siegwart, R.: Multisensor on-the-fly localization: precision and reliability for applications. Robot. Auton. Syst. 34, 131–143 (2001). http://citeseer.ist.psu.edu/ arras01multisensor.html

    Article  MATH  Google Scholar 

  39. Marhic, B., Mouaddib, E.M., Fofi, D., Brassart, E.: Localisation absolue par capteur omnidirectionnel SYCLOP. Trait. Signal 17(3-NS), 195–206 (2000). http://hdl.handle.net/2042/2142

    MATH  Google Scholar 

  40. Chong, K.S., Kleeman, L.: Sensor based map building for a mobile robot. In: Proceeding of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, pp. 1700–1705 (1997)

  41. Oriolo, G., Ulivi, G., Vendittelli, M.: Fuzzy maps: a new tool for mobile robot perception and planning. J. Robot. Syst. 14(3), 179–197 (1997). citeseer.ist.psu.edu/oriolo97fuzzy.html

    Article  Google Scholar 

  42. Cho, D.W.: Certainty grid representation for robot navigation by a Bayesian method. Robotica 8, 159–165 (1990)

    Article  Google Scholar 

  43. Dellaert, F., Burgar, W., Fox, D., Thrun, S.: Using the condensation algorithm for robust, vision-based mobile robot localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’99) (1999)

  44. Thrun, S., Bucken, A.: Integrating grid-based and topological maps for mobile robot navigation. In: AAAI/IAAI, vol. 2, pp. 944–950 (1996). citeseer.ist.psu.edu/thrun96integrating.html

  45. Pruski, A.: Robotique mobile, planification de trajectoire. Hermes, Paris

  46. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localisation for mobile robots. Artif. Intell. 128, 99–141 (2001)

    Article  MATH  Google Scholar 

  47. Aycard, O., Charpillet, F., Fohr, D., Mari, J.-F.: Place learning and recognition using hidden Markov models. In: Proceedings if the IEEE/IROS, pp. 1741–1746 (1997)

  48. Borges, G., Aldon, M.-J.: Optimal mobile robot pose estimation using geometrical maps. IEEE Trans. Robot. Autom. 18(1), 87–94 (2002)

    Article  Google Scholar 

  49. Frese, U., Larsson, P., Duckett, T.: A multigrid algorithm for simultaneous localization and mapping. IEEE Trans. Robot. 21(2), 1–12 (2005). http://www.informatik.uni-bremen.de/~ufrese/slammlr_e.html

    Article  Google Scholar 

  50. Kreutner, M., Horn, O.: Co-operation between ultrasound and monocular vision for the localization of a mobile robot. In: Proceedings of the Computing Engineering in Systems Applications, Ecole Centrale, Université de Lille, France (2003)

  51. Leonard, J., Durrant-whyte, F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)

    Article  Google Scholar 

  52. Piasecki, M.: Global localization for mobile robots by multiple hypothesis tracking. Robot. Auton. Syst. 16(1), 93–104 (1995)

    Article  Google Scholar 

  53. Araujo Broges, G.: Cartographie de l’environnement et localisation robuste pour la navigation de robots mobiles. Spécialité: Génie Informatique, automatique et traitement du signal, Université de Montpellier II, vol. 27, pp. 1299–1304 (2002)

  54. Leonard, J.J., Tardòs, J.D.: Mobile navigation and mapping. In: IEEE International Conference on Robotics and Automation: Workshop on Mobile Robot Navigation and Mapping (2000)

  55. Cox, J.: Blanche—an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Trans. Robot. Autom. 7, 193–204 (1991)

    Article  Google Scholar 

  56. Kalman, R.: A New approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Google Scholar 

  57. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3, 4–16 (1986)

    Article  Google Scholar 

  58. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11, 391–427 (1999)

    MATH  Google Scholar 

  59. Shatkay, H., Kaelbling, L.: Learning geometrically-constrained hidden Markov models for robot navigation: briding the topological–geometrical gap. J. Artif. Intell. Res. 16, 167–207 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Eur. Conf. on Computer VisionECCV (1), pp. 343–356 (1996)

  61. Jensfelt, P., Wijk, O., Austin, D., Andersson, M.: Experiments on augmenting Condensation for mobile robot localization. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 2518–2524 (2000)

  62. Kass, M., Witkins, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  63. Grasse, R., Morère, Y., Pruski, A.: Aided navigation for disabled people: route recognition with augmented HMMs. In: 8th Conf. for the Advancement of Assistive Technology, AAATE 2005, Lille (2005)

  64. Black, M.J., Jepson, A.D.: A probabilistic framework for matching temporal trajectories : condensation-based recognition of gesture and expressions. In: Burkhardt, H., Neumann, B. (eds.) European Conf. on Computer Vision, ECCV-98, pp. 909–924. Springer, Freiburg (1998)

    Chapter  Google Scholar 

  65. Handschin, J.E.: Monte Carlo techniques for prediction and filtering of non-linear stochastique processes. In: Automatica, vol. 6, pp. 555–563 (1970)

  66. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEEE Proceedings, F. 140(2), pp. 107–113 (1993)

  67. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian non-linear state space models. J. Comput. Graph. Stat. 5(1):1–25 (1996)

    Article  MathSciNet  Google Scholar 

  68. Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1):5–28 (1998)

    Article  Google Scholar 

  69. Durrant Whyte, H., Bailey, T.: Simultaneous localization and mapping: part 1. IEEE Robot. Autom. Mag. 13(2), 99–108 (2006)

    Article  Google Scholar 

  70. Durrant Whyte, H., Bailey, T.: Simultaneous localization and mapping: part 2. IEEE Robot. Autom. Mag. 13, 108–117 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Morère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasse, R., Morère, Y. & Pruski, A. Assisted Navigation for Persons with Reduced Mobility: Path Recognition Through Particle Filtering (Condensation Algorithm). J Intell Robot Syst 60, 19–57 (2010). https://doi.org/10.1007/s10846-010-9406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9406-y

Keywords

Navigation