Skip to main content
Log in

On Kalman Active Observers

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The paper introduces the Active Observer (AOB) algorithm in the framework of Kalman filters. The AOB reformulates the Kalman filter to accomplish model-reference adaptive control based on: (1) A desired closed loop system. (2) An extra equation to estimate an equivalent disturbance referred to the system input. An active state is introduced to compensate unmodeled terms, providing a feedforward compensation action. (3) Stochastic design of the Kalman matrices. Stability analysis with model errors is discussed. An example of robot force control with an external and unknown nonlinear disturbance is presented (SISO system). Another example of model-matching control for steer-by-wire (SBW) vehicles with underactuated structure is discussed (MIMO system).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aström, K.J., Wittenmark, B.: Computer Controlled Systems: Theory and Design. Prentice Hall, NJ (1997)

    Google Scholar 

  2. Bajcinca, N., Cortesão, R., Hauschild, M.: Robust control for steer-by-wire vehicles. Auton. Robots 19 193–214 (2005)

    Article  Google Scholar 

  3. Bozic, S.M.: Digital and Kalman Filtering. Edward Arnold, London (1979)

    Google Scholar 

  4. Chen, B., Lin, Z., Liu, K.: Robust and perfect tracking of discrete time systems. Automatica 38(2), 293–299 (2002)

    Article  Google Scholar 

  5. Chen, X., Komada, S., Fukuda, T.: Design of a nonlinear disturbance observer. IEEE Trans. Ind. Electron. 47(2), 429–435 (2000)

    Article  Google Scholar 

  6. Chu, D., Mehrmann, V.: Disturbance decoupling for descriptor systems by state feedback. SIAM J. Control Optim. 38(6), 1830–1858 (2000)

    Article  MathSciNet  Google Scholar 

  7. Coelho, P., Nunes, U.: Path-following control of mobile robots in presence of uncertainties. IEEE Trans. Robot. 21(2), 252–261 (2005)

    Article  Google Scholar 

  8. Commault, C., Dion, J., Hovelaque, V.: A geometric approach for structured systems – application to the disturbance decoupling problem. Automatica 33(3), 403–409 (1997)

    Article  MathSciNet  Google Scholar 

  9. Cortesão, R., Bajcinca, N.: Model-matching control for steer-by-wire vehicles with under-actuated structure. In: Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), Japan, pp. 1148–1153 (2004)

  10. Cortesão, R., Koeppe, R., Nunes, U., Hirzinger, G.: Force control with a Kalman active observer applied in a robotic skill transfer system. Int. J. Machine Intel. Robot. Control (MIROC). 2(2), 59–68 (2000), Special Issue on Force Control of Advanced Robotic Systems

    Google Scholar 

  11. Cortesão, R., Koeppe, R., Nunes, U., Hirzinger, G.: Compliant motion control with stochastic active observers. In: Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), USA, pp. 1876–1881 (2001)

  12. Cortesão, R., Koeppe, R., Nunes, U., Hirzinger, G.: Data fusion for robotic assembly tasks based on human skills. IEEE Trans. Robot. 20(6), 941–952 (2004)

    Article  Google Scholar 

  13. Cortesão, R., Park, J., Khatib, O.: Real-time adaptive control for haptic telemanipulation with Kalman active observers. IEEE Trans. Robot. 22(5) 987–999 (October 2006)

  14. Doyle, J., Stein, G.: Robustness with observers. IEEE Trans. Automat. Contr. 24(4), 607–611 (1979)

    Article  MathSciNet  Google Scholar 

  15. Estrada, M., Malabre, M.: Necessary and sufficient conditions for disturbance decoupling with stability using PID control laws. IEEE Trans. Automat. Contr. 44(6), 1311–1315 (1999)

    Article  Google Scholar 

  16. Maia, R., Cortesão, R., Nunes, U., Silva, V., Fonseca, F.: Robust low level motion control of a WMR with stochastic active observers. In: Proc. of the Int. Conf. on Advanced Robotics, Portugal, pp. 876–882 (2003)

  17. Oda, N.: Distributed robust motion controller for redundant manipulator using disturbance observer. J. Robot. Mechatronics 13(5), 464–471 (2001)

    MathSciNet  Google Scholar 

  18. Park, J., Cortesão, R., Khatib, O.: Multi-contact compliant motion control for robotic manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, (ICRA), USA, pp. 4789–4794 (2004)

  19. Park, J., Khatib, O.: Multi-link multi-contact force control for manipulators. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA), Spain, pp. 3624–3629 (2005)

  20. De Schutter, J.: Improved force control laws for advanced tracking applications. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA), USA, pp. 1497–1502 (1988)

  21. Vaccaro, R.: Digital Control: A State-Space Approach. McGraw-Hill, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Cortesão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortesão, R. On Kalman Active Observers. J Intell Robot Syst 48, 131–155 (2007). https://doi.org/10.1007/s10846-006-9045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9045-5

Key words

Navigation