Skip to main content
Log in

An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In Mass Customisation (MC), products are intrinsically variable, because they aim at satisfying end-users’ requests. Modular design and flexible manufacturing technologies are useful strategies to guarantee a wide product variability. However, in the eyewear field, the current strategies are not easily implementable, due to some eyewear peculiarities (e.g., the large variability of the frame geometry and material, and the necessity to use specific manufacturing phases). For example, acetate spectacle-frames are bent through a thermoforming process. This particular phase requires dedicated moulds, whose geometry strictly depends on the frame model to be bent; consequently, changes of the frame geometry continuously require new moulds, which have to be designed, manufactured, used, and finally stored. The purpose of this paper is to propose a new strategy to transform a dedicated tool (i.e., a thermoforming mould) into a reconfigurable one, to optimise the tool design, manufacturing and use. First, how the frame features influence the mould geometry has been investigated, creating a map of relations. On the basis of this map, the conventional monolithic-metallic mould was divided into “standard” (re-usable) and “special” (ad-hoc) modules, where the “special” ones are in charge of managing the variability of the product geometry. The mapped relations were formalised as mathematical equations and then, implemented into a Knowledge Based Engineering (KBE) system, to automatically design the “special” modules and guarantee the mould assemblability. This paper provides an original example of how a reconfigurable thermoforming mould can be conceived and how a KBE system can be used to this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ariss, S. S., & Zhang, Q. (2002). The impact of flexible process capability on the product-process matrix: An empirical examination. International Journal of Production Economics, 76(2), 135–145. https://doi.org/10.1016/S0925-5273(01)00146-3.

    Article  Google Scholar 

  • Barman, S., & Canizares, A. E. (2015). A survey of mass customization in practice. International Journal of Supply Chain Management, 4(1), 65–72.

    Google Scholar 

  • Boothroyd, G., Dewhurst, P., & Knight, W. A. (2011). Product design for manufacture and assembly (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Bowen, D. E., & Youngdahl, W. E. (1998). “lean” service: In defense of a production-line approach. International Journal of Service Industry Management, 9(3), 207–225.

    Article  Google Scholar 

  • Brooks, C. W., & Borish, I. (2006). System for ophthalmic dispensing-e-book. Amsterdam: Elsevier Health Sciences.

    Google Scholar 

  • Brown, S., & Bessant, J. (2003). The manufacturing strategy-capabilities links in mass customisation and agile manufacturing—An exploratory study. International Journal of Operations & Production Management, 23(7), 707–730.

    Article  Google Scholar 

  • Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., Stecke, K. E., et al. (1984). Classification of flexible manufacturing systems. The FMS magazine, 2(2), 114–117.

    Google Scholar 

  • Campagnolo, D., & Camuffo, A. (2010). The concept of modularity in management studies: A literature review. International Journal of Management Reviews, 12(3), 259–283.

    Google Scholar 

  • Chan, W. M., Yan, L., Xiang, W., & Cheok, B. T. (2003). A 3d CAD knowledge-based assisted injection mould design system. The International Journal of Advanced Manufacturing Technology, 22(5), 387–395. https://doi.org/10.1007/s00170-002-1514-9.

    Article  Google Scholar 

  • Conner, B. P., Manogharan, G. P., Martof, A. N., Rodomsky, L. M., Rodomsky, C. M., Jordan, D. C., et al. (2014). Making sense of 3-d printing: Creating a map of additive manufacturing products and services. Additive Manufacturing, 1, 64–76.

    Article  Google Scholar 

  • Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. International Journal of Production Economics, 72(1), 1–13. https://doi.org/10.1016/S0925-5273(00)00079-7.

    Article  Google Scholar 

  • De Toni, A., & Nassimbeni, G. (2003). Small and medium district enterprises and the new product development challenge: Evidence from italian eyewear district. International Journal of Operations & Production Management, 23(6), 678–697. https://doi.org/10.1108/01443570310476672.

    Article  Google Scholar 

  • Deradjat, D., & Minshall, T. (2017). Implementation of rapid manufacturing for mass customisation. Journal of Manufacturing Technology Management, 28(1), 95–121. https://doi.org/10.1108/JMTM-01-2016-0007.

    Article  Google Scholar 

  • Diegel, O., Singamneni, S., Reay, S., & Withell, A. (2010). Tools for sustainable product design: Additive manufacturing. Journal of Sustainable Development, 3(3), 68.

    Article  Google Scholar 

  • Duray, R. (2011). Process typology of mass customizers. In Mass customization: Engineering and managing global operations (pp. 29–43). London: Springer London. https://doi.org/10.1007/978-1-84996-489-0_2.

    Google Scholar 

  • Duray, R., Ward, P. T., Milligan, G. W., & Berry, W. L. (2000). Approaches to mass customization: Configurations and empirical validation. Journal of Operations Management, 18(6), 605–625. https://doi.org/10.1016/S0272-6963(00)00043-7.

    Article  Google Scholar 

  • ElMaraghy, H. A. (2005). Flexible and reconfigurable manufacturing systems paradigms. International Journal of Flexible Manufacturing Systems, 17(4), 261–276.

    Article  Google Scholar 

  • Erixon, G. (1996). Design for modularity. In Design for X (pp. 356–379). Springer.

  • Fogliatto, F. S., Da Silveira, G. J. C., & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics, 138(1), 14–25. https://doi.org/10.1016/j.ijpe.2012.03.002.

    Article  Google Scholar 

  • Gadalla, M., & Xue, D. (2017). Recent advances in research on reconfigurable machine tools: A literature review. International Journal of Production Research, 55(5), 1440–1454. https://doi.org/10.1080/00207543.2016.1237795.

    Article  Google Scholar 

  • Gilmore, J. H., & Pine, B. J. (1997). The four faces of mass customization. Harvard Business Review, 75, 91–101.

    Google Scholar 

  • Gunasekaran, A. (1999). Agile manufacturing: A framework for research and development. International Journal of Production Economics, 62(1), 87–105. https://doi.org/10.1016/S0925-5273(98)00222-9.

    Article  Google Scholar 

  • ISO. (2005). Iso 7998: 2005 ophthalmic optics—spectacle frames—lists of equivalent terms and vocabulary. Geneva, Switzerland: Standard.

  • Jiao, J. R., Simpson, T. W., & Siddique, Z. (2007). Product family design and platform-based product development: A state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5–29.

    Article  Google Scholar 

  • Jose, A., & Tollenaere, M. (2005). Modular and platform methods for product family design: Literature analysis. Journal of Intelligent Manufacturing, 16(3), 371–390. https://doi.org/10.1007/s10845-005-7030-7.

    Article  Google Scholar 

  • Kakish, J., Zhang, P.-L., & Zeid, I. (2000). Towards the design and development of a knowledge-based universal modular jigs and fixtures system. Journal of Intelligent Manufacturing, 11(4), 381–401. https://doi.org/10.1023/A:1008978319436.

    Article  Google Scholar 

  • Katz, R. (2007). Design principles of reconfigurable machines. International Journal of Advanced Manufacturing Technology, 34(5–6), 430–439. https://doi.org/10.1007/s00170-006-0615-2.

    Article  Google Scholar 

  • Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., et al. (1999). Reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 48(2), 527–540. https://doi.org/10.1016/S0007-8506(07)63232-6.

    Article  Google Scholar 

  • Kusiak, A. (1985). The part families problem in flexible manufacturing systems. Annals of Operations Research, 3(6), 277–300.

    Article  Google Scholar 

  • La Rocca, G. (2012). Knowledge based engineering: Between ai and cad. review of a language based technology to support engineering design. Advanced Engineering Informatics, 26(2), 159–179.

    Article  Google Scholar 

  • Lou, Z., Jiang, H., & Ruan, X. (2004). Development of an integrated knowledge-based system for mold-base design. Journal of Materials Processing Technology, 150(1–2), 194–199. https://doi.org/10.1016/j.jmatprotec.2004.01.037.

    Article  Google Scholar 

  • Lusardi, M. M., Jorge, M., & Nielsen, C. C. (2013). Orthotics and Prosthetics in Rehabilitation-E-Book. Amsterdam: Elsevier Health Sciences.

    Google Scholar 

  • MacCarthy, B., Brabazon, P. G., & Bramham, J. (2003). Fundamental modes of operation for mass customization. International Journal of Production Economics, 85(3), 289–304. https://doi.org/10.1016/S0925-5273(03)00117-8.

    Article  Google Scholar 

  • Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intelligent Manufacturing, 11(4), 403–419.

    Article  Google Scholar 

  • Mehrabi, M. G., Ulsoy, A. G., Koren, Y., & Heytler, P. (2002). Trends and perspectives in flexible and reconfigurable manufacturing systems. Journal of Intelligent Manufacturing, 13(2), 135–146. https://doi.org/10.1023/A:1014536330551.

    Article  Google Scholar 

  • Mok, C. K., Hua, M., & Wong, S. Y. (2008). A hybrid case-based reasoning cad system for injection mould design. International Journal of Production Research, 46(14), 3783–3800. https://doi.org/10.1080/00207540601103100.

    Article  Google Scholar 

  • Montalto, A., Graziosi, S., Bordegoni, M., & Di Landro, L. (2016). An inspection system to master dimensional and technological variability of fashion-related products: A case study in the eyewear industry. Computers in Industry, 83, 140–149. https://doi.org/10.1016/j.compind.2016.09.007.

    Article  Google Scholar 

  • Montalto, A., Graziosi, S., Bordegoni, M., & Di Landro, L. (2018). Combining aesthetics and engineering specifications for fashion-driven product design: a case study on spectacle frames. Computers in Industry, 95, 102–112. https://doi.org/10.1016/j.compind.2017.12.003.

    Article  Google Scholar 

  • Munro, C., & Walczyk, D. (2007). Reconfigurable pin-type tooling: A survey of prior art and reduction to practice. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 129(3), 551–565. https://doi.org/10.1115/1.2714577.

    Article  Google Scholar 

  • Müller, R., Esser, M., & Vette, M. (2013). Reconfigurable handling systems as an enabler for large components in mass customized production. Journal of Intelligent Manufacturing, 24(5), 977–990. https://doi.org/10.1007/s10845-012-0624-y.

    Article  Google Scholar 

  • Nayak, R., Padhye, R., Wang, L., Chatterjee, K., & Gupta, S. (2015). The role of mass customisation in the apparel industry. International Journal of Fashion Design, Technology and Education, 8(2), 162–172. https://doi.org/10.1080/17543266.2015.1045041.

    Article  Google Scholar 

  • Pattinson, S. W., & Hart, A. J. (2017). Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Advanced Materials Technologies, 2(4), 1600084–n/a. https://doi.org/10.1002/admt.201600084.

    Article  Google Scholar 

  • Sansoni, S., Wodehouse, A., McFadyen, A. K., & Buis, A. (2015). The aesthetic appeal of prosthetic limbs and the uncanny valley: The role of personal characteristics in attraction. International Journal of Design, 9(1), 67–81.

    Google Scholar 

  • Sharma, R. (2013). Custom eyewear: The next focal point for 3D printing? Retrieved April 12, 2017 from https://www.forbes.com/sites/rakeshsharma/2013/09/10/custom-eyewear-the-next-focal-point-for-3d-printing/.

  • Smith, S., Smith, G., Jiao, R., & Chu, C.-H. (2013). Mass customization in the product life cycle. Journal of Intelligent Manufacturing, 24(5), 877–885. https://doi.org/10.1007/s10845-012-0691-0.

    Article  Google Scholar 

  • Sreedhara, V. S. M., & Mocko, G. (2015). Control of thermoforming process parameters to increase quality of surfaces using pin-based tooling. In ASME. International design engineering technical conferences and computers and information in engineering conference, vol. 4: 20th Design for manufacturing and the life cycle conference; 9th international conference on micro- and nanosystems, ASME, V004T05A016. https://doi.org/10.1115/detc2015-47682

  • Stump, B., & Badurdeen, F. (2012). Integrating lean and other strategies for mass customization manufacturing: A case study. Journal of Intelligent Manufacturing, 23(1), 109–124. https://doi.org/10.1007/s10845-009-0289-3.

    Article  Google Scholar 

  • Tugrul, Ã., et al. (2016). Biomedical devices: Design, prototyping, and manufacturing. New York: Wiley.

    Google Scholar 

  • van der Laan, T., Weteringe, B., & van Tooren, M. (2004). Automatic generation of rib mould for rubber forming of thermoplastic composites, using knowledge based engineering. In Proceedings of the 11th European conference on composite materials, Rhodes, G.

  • Vosniakos, G.-C., & Giannakakis, T. (2013). A knowledge-based manufacturing advisor for pressworked sheet metal parts. Journal of Intelligent Manufacturing, 24(6), 1253–1266. https://doi.org/10.1007/s10845-012-0664-3.

    Article  Google Scholar 

  • Zhou, F., Ji, Y., & Jiao, R. (2013). Affective and cognitive design for mass personalization: Status and prospect. Journal of Intelligent Manufacturing, 24(5), 1047–1069. https://doi.org/10.1007/s10845-012-0673-2.

    Article  Google Scholar 

  • Zipkin, P. (2001). The limits of mass customization. MIT Sloan Management Review, 42(3), 81–87.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the ParaPy company (www.parapy.nl) for having provided the ParaPy® software tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Montalto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalto, A., Graziosi, S., Bordegoni, M. et al. An approach to design reconfigurable manufacturing tools to manage product variability: the mass customisation of eyewear. J Intell Manuf 31, 87–102 (2020). https://doi.org/10.1007/s10845-018-1436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1436-5

Keywords

Navigation