Skip to main content
Log in

Robust optimization of supply chain network design in fuzzy decision system

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a new robust optimization method for supply chain network design problem by employing variable possibility distributions. Due to the variability of market conditions and demands, there exist some impreciseness and ambiguousness in developing procurement and distribution plans. The proposed optimization method incorporates the uncertainties encountered in the manufacturing industry. The main motivation for building this optimization model is to make tools available for producers to develop robust supply chain network design. The modeling approach selected is a fuzzy value-at-risk (VaR) optimization model, in which the uncertain demands and transportation costs are characterized by variable possibility distributions. The variable possibility distributions are obtained by using the method of possibility critical value reduction to the secondary possibility distributions of uncertain demands and costs. We also discuss the equivalent parametric representation of credibility constraints and VaR objective function. Furthermore, we take the advantage of structural characteristics of the equivalent optimization model to design a parameter-based domain decomposition method. Using the proposed method, the original optimization problem is decomposed to two equivalent mixed-integer parametric programming sub-models so that we can solve the original optimization problem indirectly by solving its sub-models. Finally, we present an application example about a food processing company with four suppliers, five plants, five distribution centers and five customer zones. We formulate our application example as parametric optimization models and conduct our numerical experiments in the cases when the input data (demands and costs) are deterministic, have fixed possibility distributions and have variable possibility distributions. Experimental results show that our parametric optimization method can provide an effective and flexible way for decision makers to design a supply chain network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bachlaus, M., Pandey, M. K., Mahajan, C., Shankar, R., & Tiwari, M. K. (2008). Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach. Journal of Intelligent Manufacturing, 19(6), 747–761.

    Article  Google Scholar 

  • Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227, 199–215.

    Article  Google Scholar 

  • Bai, X. J., & Liu, Y. K. (2014). Semideviations of reduced fuzzy variables: A possibility approach. Fuzzy Optimization and Decision Making, 13(2), 173–196.

    Article  Google Scholar 

  • Baud-Lavigne, B., Bassetto, S., & Agard, B. (2014). A method for a robust optimization of joint product and supply chain design. Journal of Intelligent Manufacturing, 1–9, doi:10.1007/s10845-014-0908-5.

  • Ben-Tal, A., Golany, B., & Shtern, S. (2009). Robust multi-echelon multi-period inventory control. European Journal of Operational Research, 199(3), 922–935.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Chandra, C., & Grabis, J. (2007). Supply chain configuration: Concepts, solutions and applications. New York: Springer.

    Google Scholar 

  • Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2013). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 24(2), 277–293.

    Article  Google Scholar 

  • Chien, C. F., & Zheng, J. N. (2012). Mini-max regret strategy for robust capacity expansion decisions in semiconductor manufacturing. Journal of Intelligent Manufacturing, 23(6), 2151–2159.

    Article  Google Scholar 

  • Cohen, M. A., & Lee, H. L. (1988). Strategic analysis of integrated production-distribution systems: Models and methods. Operations Research, 36, 216–228.

    Article  Google Scholar 

  • Dong, M., He, F., & Wei, H. (2012). Energy supply network design optimization for distributed energy systems. Computers & Industrial Engineering, 63, 546–552.

    Article  Google Scholar 

  • Efendigil, T., & Önüt, S. (2012). An integration methodology based on fuzzy inference systems and neural approaches for multi-stage supply-chains. Computers & Industrial Engineering, 62, 554–569.

    Article  Google Scholar 

  • El-Ghaoui, L., Oks, M., & Oustry, F. (2003). Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Operations Research, 51(4), 543–556.

    Article  Google Scholar 

  • El-Ghaoui, L., Oustry, F., & Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33–52.

    Article  Google Scholar 

  • Fazlollahtabar, H., Mahdavi, I., & Mohajeri, A. (2013). Applying fuzzy mathematical programming approach to optimize a multiple supply network in uncertain condition with comparative analysis. Applied Soft Computing, 13, 550–562.

    Article  Google Scholar 

  • Fujita, K., Amaya, H., & Akai, R. (2013). Mathematical model for simultaneous design of module commonalization and supply chain configuration toward global product family. Journal of Intelligent Manufacturing, 24(5), 991–1004.

    Article  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20, 822–844.

    Article  Google Scholar 

  • Georgiadis, P., & Athanasiou, E. (2013). Flexible long-term capacity planning in closed-loop supply chains with remanufacturing. European Journal of Operational Research, 225, 44–58.

    Article  Google Scholar 

  • Gumus, A. T., Guneri, A. F., & Keles, S. (2009). Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study. Expert Systems with Applications, 36, 12570–12577.

    Article  Google Scholar 

  • Gülpınar, N., Pachamanova, D., & Çanakoğlu, E. (2013). Robust strategies for facility location under uncertainty. European Journal of Operational Research, 225(1), 21–35.

    Article  Google Scholar 

  • Hasani, A., Zegordi, S. H., & Nikbakhsh, E. (2012). Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. International Journal of Production Research, 50(16), 4649–4669.

    Article  Google Scholar 

  • Inuiguchi, M., & Sakawa, M. (1998). Robust optimization under softness in a fuzzy linear programming problem. International Journal of Approximate Reasoning, 18(1), 21–34.

    Article  Google Scholar 

  • Kasperski, A., & Kulej, M. (2009). Choosing robust solutions in discrete optimization problems with fuzzy costs. Fuzzy Sets and Systems, 160(5), 667–682.

    Article  Google Scholar 

  • Kristianto, Y., Gunasekaran, A., Heloa, P., & Hao, Y. (2014). A model of resilient supply chain network design: A two-stage programming with fuzzy shortest path. Expert Systems with Applications, 41, 39–49.

    Article  Google Scholar 

  • Kubat, C., & Yuce, B. (2012). A hybrid intelligent approach for supply chain management system. Journal of Intelligent Manufacturing, 23(4), 1237–1244.

    Article  Google Scholar 

  • Jolai, F., Amalnick, M. S., Alinaghian, M., Shakhsi-Niaei, M., & Omrani, H. (2011). A hybrid memetic algorithm for maximizing the weighted number of just-in-time jobs on unrelated parallel machines. Journal of Intelligent Manufacturing, 22(2), 247–261.

    Article  Google Scholar 

  • Li, H., & Womer, K. (2012). Optimizing the supply chain configuration for make-to-order manufacturing. European Journal of Operational Research, 221, 118–128.

    Article  Google Scholar 

  • Liu, B., & Liu, Y. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450.

    Article  Google Scholar 

  • Liu, Y., & Gao, J. (2007). The independent of fuzzy variables with applications to fuzzy random optimization. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15, 1–20.

  • Liu, Z., & Liu, Y. (2010). Type-2 fuzzy variables and their arithmetic. Soft Computing, 14(7), 729–747.

    Article  Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management-A review. European Journal of Operational Research, 196(2), 401–412.

    Article  Google Scholar 

  • Miller, S., & John, R. (2010). An interval type-2 fuzzy multiple echelon supply chain model. Knowledge-Based Systems, 23, 363–368.

    Article  Google Scholar 

  • Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.

    Article  Google Scholar 

  • Nie, X. H., Huang, G. H., Li, Y. P., & Li, L. (2007). IFRP: A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 84, 1–11.

    Article  Google Scholar 

  • Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36, 2762–2776.

    Article  Google Scholar 

  • Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & Operations Research, 37(4), 668–683.

    Article  Google Scholar 

  • Petrovic, D., Xie, Y., Burnham, K., & Petrovic, R. (2008). Coordinated control of distribution supply chains in the presence of fuzzy customer demand. European Journal of Operational Research, 185, 146–158.

    Article  Google Scholar 

  • Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35, 637–649.

    Article  Google Scholar 

  • Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36, 3433–3446.

    Article  Google Scholar 

  • Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36, 535–548.

    Article  Google Scholar 

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., & Naini, G. J. (2013). Optimizing multiproduct multiconstraint inventory control systems with stochastic period length and emergency order. Journal of Uncertain Systems, 7(1), 58–71.

    Google Scholar 

  • Tsao, Y. C., & Lu, J. C. (2012). A supply chain network design considering transportation cost discounts. Transportation Research Part E, 48, 401–414.

    Article  Google Scholar 

  • Wong, J. T. (2012). DSS for 3PL provider selection in global supply chain: Combining the multi-objective optimization model with experts’ opinions. Journal of Intelligent Manufacturing, 23(3), 599–614.

  • Yang, G., & Liu, Y. (2013). Designing fuzzy supply chain network problem by mean-risk optimization method. Journal of Intelligent Manufacturing, 1–12, doi:10.1007/s10845-013-0801-7.

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I, Information Sciences, 8, 199–249.

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  Google Scholar 

  • Zhang, L., & Zhou, Y. (2011). A new approach to supply chain network equilibrium models. Computers & Industrial Engineering, 63, 82–88.

    Article  Google Scholar 

  • Zhou, G., & Min, H. (2011). Designing a closed-loop supply chain with stochastic product returns: A genetic algorithm approach. International Journal of Logistics Systems and Management, 9, 397–418.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Editors and anonymous reviewers, whose valuable comments led to an improved version of the paper. This work was supported by the National Natural Science Foundation of China (No. 61374184), and the Training Foundation of Hebei Province Talent Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yankui Liu.

Appendix

Appendix

In this appendix, we deal with the method of PCV reduction, parametric possibility distributions of the reduced fuzzy variables and their properties.

Let \((\Gamma , \mathcal {A}, \tilde{\mathrm{P}}\mathrm{os})\) be a fuzzy possibility space (Liu and Liu 2010), where \(\Gamma \) is an abstract space of generic elements \(\gamma \) and \(\mathcal {A}\) is a class of subsets of \(\Gamma \) that is closed under arbitrary unions, intersections and complement in \(\Gamma \). Assume that \(\tilde{\xi }\) is a type-2 fuzzy variable with secondary possibility distribution \(\tilde{\mu }_{\tilde{\xi }}(x)\). To reduce the uncertainty in \(\tilde{\mu }_{\tilde{\xi }}(x)\), we employ the lower and upper possibility critical values (PCVs) of \(\tilde{\mu }_{\tilde{\xi }}(x)\) as the representing values of the regular fuzzy variable (RFV) \(\tilde{\mu }_{\tilde{\xi }}(x)\). According to Bai and Liu (2014), the lower PCV of \(\tilde{\mu }_{\tilde{\xi }}(x)\) with respect to possibility, denoted by \(\mathrm{VaR}^L_\alpha (\tilde{\mu }_{\tilde{\xi }}(x))\), is defined as

$$\begin{aligned} \mathrm{VaR}^L_\alpha (\tilde{\mu }_{\tilde{\xi }}(x))=\inf \{\,t\mid \mathrm{Pos}\{\tilde{\mu }_{\tilde{\xi }}(x)\le t\}\ge \alpha \}, \end{aligned}$$

while the upper PCV of \(\tilde{\mu }_{\tilde{\xi }}(x)\) with respect to possibility, denoted by \(\mathrm{VaR}^U_\alpha (\tilde{\mu }_{\tilde{\xi }}(x))\), is defined as

$$\begin{aligned} \mathrm{VaR}^U_\alpha (\tilde{\mu }_{\tilde{\xi }}(x))=\sup \{\,t\mid \mathrm{Pos}\{\tilde{\mu }_{\tilde{\xi }}(x)\ge t\}\ge \alpha \}. \end{aligned}$$

The method is referred to as the PCV reduction. The variables obtained by the methods of lower and upper PCV reduction are called the lower and upper reduced fuzzy variables, and denoted by \(\xi ^L\) and \(\xi ^U\), respectively.

We call \(\tilde{\xi }\) a type-2 triangular fuzzy variable if its secondary possibility distribution \(\tilde{\mu }_{\tilde{\xi }}(x)\) is the following RFV

$$\begin{aligned}&\!\!\!\left( \frac{x-r_1}{r_2-r_1}-\theta _l\min \left\{ \frac{x-r_1}{r_2-r_1}, \frac{r_2-x}{r_2-r_1}\right\} ,\frac{x-r_1}{r_2-r_1},\frac{x-r_1}{r_2-r_1}\right. \\&\quad \left. +\,\theta _r\min \left\{ \frac{x-r_1}{r_2-r_1},\frac{r_2-x}{r_2-r_1}\right\} \right) \end{aligned}$$

for any \(x\in [r_1,r_2]\), and the next RFV

$$\begin{aligned}&\!\!\!\left( \frac{r_3-x}{r_3-r_2}-\theta _l\min \left\{ \frac{r_3-x}{r_3-r_2}, \frac{x-r_2}{r_3-r_2}\right\} ,\frac{r_3-x}{r_3-r_2},\frac{r_3-x}{r_3-r_2}\right. \\&\left. \quad +\,\theta _r\min \left\{ \frac{r_3-x}{r_3-r_2},\frac{x-r_2}{r_3-r_2}\right\} \right) \end{aligned}$$

for any \(x\in [r_2,r_3]\), where \(\theta _l,\theta _r\in [0,1]\) are two parameters characterizing the degree of uncertainty that \(\tilde{\xi }\) takes the value \(x\). For convenience, we denote a type-2 triangular fuzzy variable \(\tilde{\xi }\) with the above secondary possibility distribution by \((\tilde{r}_1,\tilde{r}_2,\tilde{r}_3;\theta _l,\theta _r)\).

Theorem 1

Let \(\tilde{\xi }=(\tilde{r}_1,\tilde{r}_2,\tilde{r}_3;\theta _l,\theta _r)\) be a type-2 triangular fuzzy variable. If we denote \(\theta =(\theta _l,\theta _r)\), then the reduced fuzzy variables \(\xi ^L\) and \(\xi ^U\) have the following parametric possibility distributions

$$\begin{aligned}&\!\!\!\mu _{\xi ^L}(x;\theta ,\alpha )\nonumber \\&\quad =\left\{ \begin{array}{ll} (1-\theta _l+\alpha \theta _l)\frac{x-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [r_1,\frac{r_1+r_2}{2}]\\ \frac{(1+\theta _l-\alpha \theta _l)x-(1-\alpha )\theta _lr_2-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [\frac{r_1+r_2}{2},r_2]\\ \frac{-(1+\theta _l-\alpha \theta _l)x+(1-\alpha )\theta _lr_2+r_3}{r_3-r_2}, &{} \mathrm{if}~~x\in [r_2,\frac{r_2+r_3}{2}]\\ (1-\theta _l+\alpha \theta _l)\frac{r_3-x}{r_3-r_2}, &{}\mathrm{if}~~x\in [\frac{r_2+r_3}{2},r_3], \end{array}\right. \end{aligned}$$
(12)
$$\begin{aligned}&\!\!\!\mu _{\xi ^U}(x;\theta ,\alpha )\nonumber \\&\quad =\left\{ \begin{array}{ll} (1+\theta _r-\alpha \theta _r)\frac{x-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [r_1,\frac{r_1+r_2}{2}]\\ \frac{(1-\theta _r+\alpha \theta _r)x+(1-\alpha )\theta _rr_2-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [\frac{r_1+r_2}{2},r_2]\\ \frac{-(1-\theta _r+\alpha \theta _r)x-(1-\alpha )\theta _rr_2+r_3}{r_3-r_2}, &{} \mathrm{if}~~x\in [r_2,\frac{r_2+r_3}{2}]\\ (1+\theta _r-\alpha \theta _r)\frac{r_3-x}{r_3-r_2}, &{}\mathrm{if}~~x\in [\frac{r_2+r_3}{2},r_3]. \end{array}\right. \end{aligned}$$
(13)

Proof

We only prove Eq. (12), and Eq. (13) can be proved similarly.

Note that the secondary possibility distribution \(\tilde{\mu }_{\tilde{\xi }}(x)\) of \(\tilde{\xi }\) is the following triangular RFV

$$\begin{aligned}&\!\!\!\left( \frac{x-r_1}{r_2-r_1}-\theta _l\min \left\{ \frac{x-r_1}{r_2-r_1}, \frac{r_2-x}{r_2-r_1}\right\} ,\frac{x-r_1}{r_2-r_1},\frac{x-r_1}{r_2-r_1}\right. \\&\quad \left. +\,\theta _r\min \left\{ \frac{x-r_1}{r_2-r_1},\frac{r_2-x}{r_2-r_1}\right\} \right) \end{aligned}$$

for any \(x\in [r_1,r_2]\), and

$$\begin{aligned}&\!\!\!\left( \frac{r_3-x}{r_3-r_2}-\theta _l\min \left\{ \frac{r_3-x}{r_3-r_2}, \frac{x-r_2}{r_3-r_2}\right\} ,\frac{r_3-x}{r_3-r_2},\frac{r_3-x}{r_3-r_2}\right. \\&\quad \left. +\,\theta _r\min \left\{ \frac{r_3-x}{r_3-r_2},\frac{x-r_2}{r_3-r_2}\right\} \right) \end{aligned}$$

for any \(x\in [r_2,r_3]\). Since \(\xi ^L\) is the lower PCV reduction of \(\tilde{\xi }\), we have

$$\begin{aligned}&\mu _{\xi ^L}(x;\theta ,\alpha )\\&\quad =\mathrm{Pos}\{\xi ^L=x\}\\&\quad =\left\{ \begin{array}{ll} \frac{x-r_1}{r_2-r_1}-(1-\alpha )\theta _l\min \left\{ \frac{x-r_1}{r_2-r_1}, \frac{r_2-x}{r_2-r_1}\right\} , &{} \mathrm{if}~~x\in [r_1,r_2]\\ \frac{r_3-x}{r_3-r_2}-(1-\alpha )\theta _l\min \left\{ \frac{r_3-x}{r_3-r_2}, \frac{x-r_2}{r_3-r_2}\right\} , &{} \mathrm{if}~~x\in [r_2,r_3] \end{array}\right. \\&\quad =\left\{ \begin{array}{ll} (1-\theta _l+\alpha \theta _l)\frac{x-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [r_1,\frac{r_1+r_2}{2}]\\ \frac{(1+\theta _l-\alpha \theta _l)x-(1-\alpha )\theta _lr_2-r_1}{r_2-r_1}, &{} \mathrm{if}~~x\in [\frac{r_1+r_2}{2},r_2]\\ \frac{-(1+\theta _l-\alpha \theta _l)x+(1-\alpha )\theta _lr_2+r_3}{r_3-r_2}, &{} \mathrm{if}~~x\in [r_2,\frac{r_2+r_3}{2}]\\ (1-\theta _l+\alpha \theta _l)\frac{r_3-x}{r_3-r_2}, &{}\mathrm{if}~~x\in [\frac{r_2+r_3}{2},r_3], \end{array} \right. \end{aligned}$$

which completes the proof of Eq. (12). \(\square \)

Theorem 2

Let \(\tilde{\xi }=(\tilde{r}_1,\tilde{r}_2,\tilde{r}_3;\theta _l,\theta _r)\) be a type-2 triangular fuzzy variable, and \(\xi ^L\) its lower PCV reduced fuzzy variable.

  1. (i)

    If  \(\beta \in (0,(1-(1-\alpha )\theta _l)/4]\), then \(\mathrm{Cr}\{\xi ^L\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \frac{(1-2\beta -(1-\alpha )\theta _l)r_1+2\beta r_2}{1-\theta _l+\alpha \theta _l}\le r. \end{aligned}$$
  2. (ii)

    If  \(\beta \in ((1-(1-\alpha )\theta _l)/4,0.5]\), then \(\mathrm{Cr}\{\xi ^L\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \frac{(1-2\beta )r_1+(2\beta +(1-\alpha )\theta _l)r_2}{1+\theta _l-\alpha \theta _l}\le r. \end{aligned}$$
  3. (iii)

    If  \(\beta \in (0.5,(3+(1-\alpha )\theta _l)/4]\), then \(\mathrm{Cr}\{\xi ^L\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \frac{(2-2\beta +(1-\alpha )\theta _l)r_2+(2\beta -1)r_3}{1+\theta _l-\alpha \theta _l}\le r. \end{aligned}$$
  4. (iv)

    If  \(\beta \in ((3+(1-\alpha )\theta _l)/4,1]\), then \(\mathrm{Cr}\{\xi ^L\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \frac{(2-2\beta )r_2+(2\beta -1-(1-\alpha )\theta _l)r_3}{1-\theta _l+\alpha \theta _l}\le r. \end{aligned}$$

Proof

We only prove assertions \((i)\)-\((ii)\), and assertions \((iii)\)-\((iv)\) can be proved similarly.

Since \(\xi ^L\) is the lower reduced fuzzy variable of \(\tilde{\xi }\), its parametric possibility distribution \(\mu _{\xi ^L}(x)\) is given by Eq. (12).

If \(\beta \le 0.5\), then by the definition of credibility measure (Liu and Liu 2002), we have

$$\begin{aligned} \mathrm{Cr}\{\xi ^L\le r\}&= \frac{1}{2}\left( 1+\sup _{x\le r}\mu _{\xi ^L} (x;\theta ,\alpha )-\sup _{x>r}\mu _{\xi ^L}(x;\theta ,\alpha )\right) \\&= \frac{1}{2}\sup _{x\le r}\mu _{\xi ^L}(x;\theta ,\alpha ). \end{aligned}$$

Thus \(\mathrm{Cr}\{\xi ^L\le r\}\ge \beta \) is equivalent to \(\sup _{x\le r}\mu _{\xi ^L}(x;\theta ,\alpha )\ge 2\beta \). If we denote

$$\begin{aligned} \xi ^L_{\inf ,\mathrm{Pos}}(\beta )=\inf \left\{ r\mid \sup _{x\le r} \mu _{\xi ^L}(x;\theta ,\alpha )\ge \beta \right\} \end{aligned}$$

for \(\beta \in (0,1]\), then we have \(\xi ^L_{\inf ,\mathrm{Pos}}(2\beta )\le r\).

Note that \(\mu _{\xi ^L}((r_1+r_2)/2)=(1-(1-\alpha )\theta _l)/2\). If \(0<2\beta \le (1-(1-\alpha )\theta _l)/2\), i.e., \(\beta \in (0,(1-(1-\alpha )\theta _l)/4]\), then \(\xi ^L_{\inf ,\mathrm{Pos}}(2\beta )\) is the solution of the following equation

$$\begin{aligned} (1-\theta _l+\alpha \theta _l)\frac{x-r_1}{r_2-r_1}-2\beta =0. \end{aligned}$$

Solving the above equation, we have

$$\begin{aligned} \xi ^L_{\inf ,\mathrm{Pos}}(2\beta )=\frac{(1-2\beta -(1-\alpha )\theta _l)r_1+2\beta r_2}{1-\theta _l+\alpha \theta _l}. \end{aligned}$$

On the other hand, if \(1\ge 2\beta >(1-(1-\alpha )\theta _l)/2\), i.e., \(\beta \in ((1-(1-\alpha )\theta _l)/4,0.5]\), then \(\xi ^L_{\inf ,\mathrm{Pos}}(2\beta )\) is the solution of the following equation

$$\begin{aligned} \frac{(1+\theta _l-\alpha \theta _l)x-(1-\alpha )\theta _lr_2-r_1}{r_2-r_1}-2\beta =0. \end{aligned}$$

Solving the above equation, we have

$$\begin{aligned} \xi ^L_{\inf ,\mathrm{Pos}}(2\beta )=\frac{(1-2\beta )r_1+(2\beta +(1-\alpha ) \theta _l)r_2}{1+\theta _l-\alpha \theta _l}. \end{aligned}$$

The proof of theorem is complete. \(\square \)

Theorem 3

Let \(\tilde{\xi }_i=(\tilde{r}_1^i,\tilde{r}_2^i,\tilde{r}_3^i;\theta _{l,i},\theta _{r,i})\) be a type-2 triangular fuzzy variable, and \(\xi _i^U\) its upper PCV reduced fuzzy variable for \(i=1,2,\ldots ,n\). Suppose \(\tilde{\xi }_1,\tilde{\xi }_2,\ldots ,\tilde{\xi }_n\) are mutually independent, \((1-\alpha _1)\theta _{r,1}\le (1-\alpha _2)\theta _{r,2}\le \cdots \le (1-\alpha _n)\theta _{r,n}\) and \(k_i\ge 0\) for \(i=1,2,\ldots ,n\).

  1. (i)

    If  \(\beta \in (0,(1+(1-\alpha _1)\theta _{r,1})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \sum _{i=1}^nk_i\frac{(1-2\beta +(1-\alpha _i)\theta _{r,i})r^i_1+2\beta r^i_2}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\le r. \end{aligned}$$
  2. (ii)

    If there exists an \(i_0\), \(1\le i_0<n\) such that  \(\beta \in ((1+(1-\alpha _{i_0})\theta _{r,i_0})/4,(1+(1-\alpha _{i_0+1})\theta _{r,i_0+1})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned}&\sum _{i=1}^{i_0}k_i\frac{(1-2\beta )r^i_1+(2\beta -(1-\alpha _i) \theta _{r,i})r^i_2}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\\&\quad + \sum _{i=i_0+1}^nk_i\frac{(1-2\beta +(1-\alpha _i)\theta _{r,i})r^i_1+2\beta r^i_2}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\le r. \end{aligned}$$
  3. (iii)

    If  \(\beta \in ((1+(1-\alpha _n)\theta _{r,n})/4,0.5]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \sum _{i=1}^nk_i\frac{(1-2\beta )r^i_1+(2\beta -(1-\alpha _i) \theta _{r,i})r^i_2}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\le r. \end{aligned}$$
  4. (iv)

    If  \(\beta \in (0.5,(3-(1-\alpha _n)\theta _{r,n})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \sum _{i=1}^nk_i\frac{(2-2\beta -(1-\alpha _i)\theta _{r,i})r^i_2 +(2\beta -1)r^i_3}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\le r. \end{aligned}$$
  5. (v)

    If there exists an \(i_0\), \(1\le i_0<n\) such that  \(\beta \in ((3-(1-\alpha _{i_0+1})\theta _{r,i_0+1})/4,(3-(1-\alpha _{i_0})\theta _{r,i_0})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned}&\sum _{i=1}^{i_0}k_i\frac{(2-2\beta -(1-\alpha _i)\theta _{r,i})r^i_2 +(2\beta -1)r^i_3}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\\&\qquad + \sum _{i=i_0+1}^nk_i\frac{2(1-\beta )r^i_2+(2\beta -1+(1-\alpha _i)\theta _{r,i}) r^i_3}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\\&\quad \le r. \end{aligned}$$
  6. (vi)

    If \(\beta \in ((3-(1-\alpha _1)\theta _{r,1})/4,1]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

    $$\begin{aligned} \sum _{i=1}^nk_i\frac{2(1-\beta )r^i_2+(2\beta -1+(1-\alpha _i)\theta _{r,i}) r^i_3}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\le r. \end{aligned}$$

Proof

We only prove assertions \((i)\)-\((iii)\), and assertions \((iv)\)-\((vi)\) can be proved similarly.

Since \(\xi ^U_i\) is the upper reduced fuzzy variable of \(\tilde{\xi }_i\), its parametric possibility distribution is as follows

$$\begin{aligned}&\!\!\!\mu _{\xi _i^U}(x;\theta ,\alpha )\\&\quad =\left\{ \begin{array}{ll} (1+\theta _{r,i}-\alpha _i\theta _{r,i})\frac{x-r^i_1}{r^i_2-r^i_1}, &{} \mathrm{if}~~x\in [r^i_1,\frac{r^i_1+r^i_2}{2}]\\ \frac{(1-\theta _{r,i}+\alpha _i\theta _{r,i})x+(1-\alpha _i)\theta _{r,i}r^i_2-r^i_1}{r^i_2-r^i_1}, &{} \mathrm{if}~~x\in [\frac{r^i_1+r^i_2}{2},r^i_2]\\ \frac{-(1-\theta _{r,i}+\alpha _i\theta _{r,i})x-(1-\alpha _i)\theta _{r,i}r^i_2+r^i_3}{r^i_3-r^i_2}, &{} \mathrm{if}~~x\in [r^i_2,\frac{r^i_2+r^i_3}{2}]\\ (1+\theta _{r,i}-\alpha _i\theta _{r,i})\frac{r^i_3-x}{r^i_3-r^i_2}, &{}\mathrm{if}~~x\in [\frac{r^i_2+r^i_3}{2},r^i_3]. \end{array} \right. \end{aligned}$$

Denote \(\xi =\sum _{i=1}^nk_i\xi ^U_i\). If \(\beta \le 0.5\), then we have

$$\begin{aligned} \mathrm{Cr}\{\xi \le r\}&= \frac{1}{2}\left( 1+\sup _{x\le r}\mu _{\xi } (x;\theta ,\alpha )-\sup _{x>r}\mu _{\xi }(x;\theta ,\alpha )\right) \\&= \frac{1}{2}\sup _{x\le r}\mu _{\xi }(x;\theta ,\alpha ). \end{aligned}$$

Thus \(\mathrm{Cr}\{\xi \le r\}\ge \beta \) is equivalent to \(\sup _{x\le r}\mu _{\xi }(x;\theta ,\alpha )\ge 2\beta \). If we denote

$$\begin{aligned} \xi _{\inf ,\mathrm{Pos}}(\beta )=\inf \left\{ r\mid \sup _{x\le r} \mu _{\xi }(x;\theta ,\alpha )\ge \beta \right\} \end{aligned}$$

for \(\beta \in (0,1]\), then we have \(\xi _{\inf ,\mathrm{Pos}}(2\beta )\le r\).

Since \(\xi ^U_1,\xi ^U_2,\ldots ,\xi ^U_n\) are mutually independent fuzzy variables, by Liu and Gao (2007), we have

$$\begin{aligned} \xi _{\inf ,\mathrm{Pos}}(2\beta )&= \left( \sum _{i=1}^nk_i\xi ^U_i\right) _{\inf ,\mathrm{Pos}}(2\beta )\\&= \sum _{i=1}^nk_i\xi ^U_{i,\inf ,\mathrm{Pos}}(2\beta )\le r. \end{aligned}$$

Note that \(\mu _{\xi _i^U}((r^i_1+r^i_2)/2)=(1+(1-\alpha _i)\theta _{r,i})/2\). If \(0<2\beta \le (1+(1-\alpha _i)\theta _{r,i})/2\), i.e., \(\beta \in (0,(1+(1-\alpha _i)\theta _{r,i})/4]\), then for each \(i\), \(\xi ^U_{i,\inf ,\mathrm{Pos}}(2\beta )\) is the solution of the following equation

$$\begin{aligned} (1+\theta _{r,i}-\alpha _i\theta _{r,i})\frac{x-r^i_1}{r^i_2-r^i_1}-2\beta =0. \end{aligned}$$

Solving the above equation, we have

$$\begin{aligned} \xi ^U_{i,\inf ,\mathrm{Pos}}(2\beta )=\frac{(1-2\beta +(1-\alpha _i)\theta _{r,i})r^i_1+2\beta r^i_2}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}. \end{aligned}$$

On the other hand, if \(1\ge 2\beta >(1+(1-\alpha _i)\theta _{r,i})/2\), i.e., \(\beta \in ((1+(1-\alpha _i)\theta _{r,i})/4,0.5]\), then for each \(i\), \(\xi ^U_{i,\inf ,\mathrm{Pos}}(2\beta )\) is the solution of the following equation

$$\begin{aligned} \frac{(1-\theta _{r,i}+\alpha _i\theta _{r,i})x+(1-\alpha _i) \theta _{r,i}r^i_2-r^i_1}{r^i_2-r^i_1}-2\beta =0. \end{aligned}$$

Solving the above equation, we have

$$\begin{aligned} \xi ^U_{i,\inf ,\mathrm{Pos}}(2\beta )=\frac{(1-2\beta )r^i_1+(2\beta -(1-\alpha _i) \theta _{r,i})r^i_2}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}. \end{aligned}$$

According to the inequalities \((1-\alpha _1)\theta _{r,1}\le (1-\alpha _2)\theta _{r,2}\le \cdots \le (1-\alpha _n)\theta _{r,n}\), we have the following results.

If \(0<2\beta \le (1+(1-\alpha _1)\theta _{r,1})/2\), then \(\beta \le (1+(1-\alpha _i)\theta _{r,i})/4\) for \(i=1,2,\ldots ,n\). Therefore, if  \(\beta \in (0,(1+(1-\alpha _1)\theta _{r,1})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

$$\begin{aligned} \sum _{i=1}^nk_i\frac{(1-2\beta +(1-\alpha _i)\theta _{r,i})r^i_1+2\beta r^i_2}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\le r. \end{aligned}$$

If there exists an \(i_0\), \(1\le i_0<n\) such that \((1+(1-\alpha _{i_0})\theta _{r,i_0})/2<2\beta \le (1+(1-\alpha _{i_0+1})\theta _{r,i_0+1})/2\), i.e., \(\beta \in ((1+(1-\alpha _{i_0})\theta _{r,i_0})/4,(1+(1-\alpha _{i_0+1})\theta _{r,i_0+1})/4]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

$$\begin{aligned}&\sum _{i=1}^{i_0}k_i\frac{(1-2\beta )r^i_1+(2\beta -(1-\alpha _i) \theta _{r,i})r^i_2}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\\&\quad + \sum _{i=i_0+1}^nk_i\frac{(1-2\beta +(1-\alpha _i)\theta _{r,i})r^i_1+2\beta r^i_2}{1+\theta _{r,i}-\alpha _i\theta _{r,i}}\le r. \end{aligned}$$

If \(1\ge 2\beta >(1+(1-\alpha _n)\theta _{r,n})/2\), then \(\beta \ge (1+(1-\alpha _i)\theta _{r,i})/4\) for \(i=1,2,\ldots ,n\). Therefore, if  \(\beta \in ((1+(1-\alpha _n)\theta _{r,n})/4,0.5]\), then \(\mathrm{Cr}\{\sum _{i=1}^nk_i\xi ^U_i\le r\}\ge \beta \) is equivalent to

$$\begin{aligned} \sum _{i=1}^nk_i\frac{(1-2\beta )r^i_1+(2\beta -(1-\alpha _i) \theta _{r,i})r^i_2}{1-\theta _{r,i}+\alpha _i\theta _{r,i}}\le r. \end{aligned}$$

The proof of theorem is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Liu, Y. Robust optimization of supply chain network design in fuzzy decision system. J Intell Manuf 27, 1131–1149 (2016). https://doi.org/10.1007/s10845-014-0939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0939-y

Keywords

Navigation