Skip to main content
Log in

The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In a competitive business environment, the textile industrialists intend to propose diversified products according to consumers preference. For this purpose, the integration of sensory attributes in the process parameters choice seems to be a useful alternative. This paper provides fuzzy and neural models for the prediction of sensory properties from production parameters of knitted fabrics. The prediction accuracy of these models was evaluated using both the root mean square error (RMSE) and mean relative percent error (MRPE). The results revealed the models ability to predict tactile sensory attributes based on the production parameters. The comparison of the prediction performances showed that the neural models are slightly powerful than the fuzzy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AATCC. (1990). Fabric Hand: Guidelines for the subjective evaluation. Compiled by AATCC committee RA89, hand evaluation test methods.

  • Abdi, H., & Valentin, D. (2007). Some new and easy ways to describe, compare, and evaluate products and assessors, SPISE, New trends in sensory evaluation of food and non-food products symposium aims to encourage implementing sensory evaluation techniques (pp. 3–16). Vietnam.

  • Bishop, D. P. (1996). Fabrics: Sensory and mechanical properties, textile progress, vol. 26, no. 3.

  • Brand, B., Brown, D. M., Cameron, B. A., Chanler, J., Dallas, M. J., Kaiser, S. B., et al. (1998). Development of an interdisciplinary method for the study of fabric perception. Textile Research Journal, 89, 65–77

    Google Scholar 

  • Cardello A. V., Winterhalter C., Shutz H. G. (2003) Predicting the handle and comfort of military clothing fabrics from sensory and instrumental data: development and application of new psychophysical methods. Textile Research Journal 73: 221–237

    Article  Google Scholar 

  • Civille G.V., Dus C.A. (1990). Development of terminology to describe the handfeel properties of paper and fabrics. Journal of Sensory Studies 5: 19–32

    Article  Google Scholar 

  • Danzart, M. (1998). Evaluations sensorielles: Manuel Méthodologique (2nd ed., pp. 218–317). Paris: SSHA, Lavoisier Tec et Doc.

    Google Scholar 

  • Dubois, D., & Prade, H. (1997). Fuzzy criteria and fuzzy rules in subjective evaluation—A general discussion. In Proceedings of EUFIT’97 (pp. 975–979). Aachen, Germany.

  • Elder H. M., Fisher S., Armstrong K., Hutchison G. (1984) Fabric softness, handle and compression. Journal of Textile Institute 75: 37–46

    Article  Google Scholar 

  • El-Ghezal, S., Babay Dhouib, A., Sahnoun, M., Cheikhrouhou, M., Njeugna, N., Schacher, L., et al. (2008). Study of the tactile evaluation of knitted fabrics. In Proceedings fiber society spring conference (pp. 106–107).

  • El-Ghezal, S., Babay Dhouib, A., Sahnoun, M., Cheikhrouhou, M., Njeugna, N., Schacher, L., et al. (2009). The tactile sensory evaluation of knitted fabrics: Effect of some finishing treatments. Journal of Sensory Studies (Under press).

  • Ertugrul S., Ucar N. (2000) Predicting bursting strength of cotton plain knitted fabrics using intelligent techniques. Textile Research Journal 70: 845–851

    Article  Google Scholar 

  • Ertugrul I., Aytaç E. (2009) Construction of quality control charts by using probability and fuzzy approaches and an application in a textile company. Journal of Intelligent Manufacturing 20: 139–149

    Article  Google Scholar 

  • Fukunaga K. (1990) Introduction to statistical pattern recognition, 2nd edn. Academic1, San Diego, CA

    Google Scholar 

  • Giboreau A., Navarro S., Faye P., Dumortier J. (2001) Sensory evaluation of automotive fabrics: the contribution of categorization tasks and non verbal information to set-up a descriptive method of tactile properties. Food Quality and Preference 12: 311–322

    Article  Google Scholar 

  • Griffiths P., Kulke T. (2002) Clothing movement: Visual sensory evaluation and its correlation to fabric properties. Journal of Sensory Studies 17: 229–255

    Article  Google Scholar 

  • Haykin, S. (2000). Neural networks: A comprehensive foundation, Prentice Hall, New Jersey, 2nd edition, 1999. Presented at the ASME ICE division fall 2000 technical meeting September 25–27, Peoria.

  • Hui C. L., Lau T. W., Ng S. F. (2004) Neural network prediction oh human psychological perceptions of fabric hand. Textile Research Journal 74(5): 375–383

    Article  Google Scholar 

  • ISO, ISO-standard 6658. (1985). Sensory analysis: Methodology; general guidance. Geneva, Switzerland: The International Organization for Standardization.

    Google Scholar 

  • ISO, ISO-standard 5492. (1992). Sensory analysis: Vocabulary. Geneva, Switzerland: The International Organization for Standardization.

    Google Scholar 

  • Jain V., Tiwari M. K., Chan F. T. S. (2004) Evaluation of the supplier performance using an evolutionary fuzzy-based approach. Journal of Manufacturing Technology Management 15(8): 735–744

    Article  Google Scholar 

  • Ju J., Ryu H. (2006) A study on subjective assessment of knit fabric by ANFIS. Fibers and Polymers 7(2): 203–212

    Article  Google Scholar 

  • Kawabata, S. (1982). The development of the objective measurement of fabric handle. In Proceedings of the first-Japan Australia symposium on objective specification of fabric quality, mechanical properties and performance (pp. 31–59). Kyoto, Japan.

  • Koehl, L., Zeng, X., & Hu, J. (2000). Modelling relationship between objective and subjective data sets of fabric evaluation. In Proceedings of fourth world automation congress (pp. 11–16). USA.

  • Kwak C., Ventura J. A., Tofang-Sazi K. (2000) A neural network approach for defect identification and classification on leather fabric. Journal of Intelligent Manufacturing 11: 485–499

    Article  Google Scholar 

  • Mackay C., Anand S. C., Bishop D. P. (1999) Effects of laundering on the sensory and mechanical properties of 1 × 1 rib knitwear fabrics. Part II: Changes in sensory and mechanical properties. Textile Research Journal 69(4): 252–260

    Article  Google Scholar 

  • Mamdani E. H., Assilian S. (1975) An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7: 1–13

    Article  Google Scholar 

  • Matsuo T., Nasu N., Saito M. (1971) Study on the hand, part 2: The method for measuring hand. Journal of the Textile Machinery Society 24(4): 58–68

    Google Scholar 

  • Meilgaard, M., Civille, G.V., & Carr, B.T. (1999). Sensory evaluation techniques, 3rd ed. CRC Press LLC, ISBN 0-8493-0276-5, USA.

  • Park S. W., Hwang Y. G., Kang B. C. (2000) Applying fuzzy logic and neural networks to total hand evaluation of knitted fabrics. Textile Research Journal 70(8): 675–681

    Article  Google Scholar 

  • Pensé-Lhéritier A. M., Guilabert C., Bueno M. A., Sahnoun M., Renner M. (2006) Sensory evaluation of the touch of a great number of fabrics. Food Quality Preference 17: 482–488

    Article  Google Scholar 

  • Philippe F., Schacher L., Adolphe D., Dacremont C. (2003) The sensory panel applied to textile goods: A new marketing tool. Journal of Fashion Marketing and Management 7: 235–248

    Article  Google Scholar 

  • Philippe F., Schacher L., Adolphe D., Dacremont C. (2004) Tactile feeling: Sensory analysis applied to textile goods. Textile Research Journal 74(12): 1066–1072

    Article  Google Scholar 

  • Rumelhart D. E., Hinton G. E., Williams R. J. (1986) Learning representations by back-propagating errors. Nature 323: 533–536

    Article  Google Scholar 

  • Soufflet I., Calonnier M., Dacremont C. (2004) A comparison between industrial experts’ and novices’ haptic perceptual organization: A tool to identify descriptors of the handle of fabrics. Food Quality and Preference 15: 689–699

    Article  Google Scholar 

  • Valentin, D. (2001). Cours de statistiques multivariées, DESS Gestion des propriétés sensorielles des aliments, ENSBANA.

  • Wong A. S. W., Li Y., Yeung P. K. W., Lee P. W. H. (2003) Neural network predictions of human psychological perceptions of clothing sensory comfort. Textile Research Journal 71: 331–337

    Google Scholar 

  • Wong W. K., Kwong C. K., Mok P. Y., Ip W. H. (2006) Genetic optimization of JIT operation schedules for fabric-cutting process in apparel manufacture. Journal of Intelligent Manufacturing 17: 341–354

    Article  Google Scholar 

  • Zadeh L.A. (1965) Fuzzy sets. Information and Control 8: 338

    Article  Google Scholar 

  • Zimmerman H. J. (1996) Fuzzy set theory and its applications, (2nd ed.). Fuzzy sets. Allied Publishers Limited, New Delhi

    Google Scholar 

  • Zeng X., Koehl L., Sahnoun M., Bueno M. A., Renner M. (2004) Integration of human knowledge and measured data for optimization of fabric hand. International Journal of General Systems 33(2–3): 243–258

    Article  Google Scholar 

  • Zeng X., Ruan D., Koehl L. (2008) Intelligent sensory evaluation: Concepts, implementations and applications. Mathematics and Computers in Simulation 77: 443–452

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selsabil El-Ghezal Jeguirim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Ghezal Jeguirim, S., Dhouib, A.B., Sahnoun, M. et al. The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. J Intell Manuf 22, 873–884 (2011). https://doi.org/10.1007/s10845-009-0362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-009-0362-y

Keywords

Navigation