Skip to main content

Advertisement

Log in

A semiautomatic method for obtaining a predictive deep learning model and a rule-based system for abdominal aortic aneurysms

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Development in the medical field is getting fast every day. People’s interest in improving their expectancy of life, their life quality, and the significant investments in medical laboratories modify the diagnosis methods, application protocols, and surgical techniques. One of the most significant milestones in the medical field have been incorporating computers to improve data analysis during the last years. Nowadays, it is a fact that computers can help physicians, i.e., the use of artificial intelligence techniques. This paper proposes a multistage prediction-based approach and a rule-based system for the treatment of abdominal aortic aneurysms. The first step is to develop a neural network model to predict 30-day mortality during and after aortic endovascular procedures. The second step aims to infer a rule-based system from the previous model. The results show that with only eight features the final predictive model can obtain an accuracy of around 87%. Furthermore, a decision tree with the same accuracy can be inferred from this model using three features and four rules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://nlp.stanford.edu/sentiment/treebank.html

  2. http://www.clipsrules.net/

  3. http://hurlab.med.und.edu/SciMiner/

  4. https://pandas.pydata.org/

  5. https://numpy.org/

  6. https://scikit-learn.org/

  7. https://impyute.readthedocs.io/en/latest/

  8. https://github.com/epsilon-machine/missingpy

  9. https://imbalanced-learn.readthedocs.io/en/stable/

  10. https://keras.io/

  11. https://github.com/slundberg/shap

References

  • Akula, V.G. (2015). Rule-based systems for medical diagnosis. Fuzzy Expert Systems for Disease Diagnosis, pp. 21–44.

  • Angelov, P.P., & Gu, X. (2018). Deep rule-based classifier with human-level performance and characteristics. Information Sciences, 463, 196–213.

    Article  Google Scholar 

  • Basheer, I.A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.

    Article  Google Scholar 

  • Batista, G.E., Bazzan, A.L., & Monard, M.C. (2003). Balancing training data for automated annotation of keywords: a case study. WOB, pp. 10–18.

  • Batista, G.E., Prati, R.C., & Monard, M.C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29.

    Article  Google Scholar 

  • Bergstra, J.S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyperparameter optimization. Advances in Neural Information Processing Systems, pp. 2546–2554.

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L., Friedman, J., Stone, C.J., & Olshen, R.A. (1984). Classification and regression trees. CRC Press, https://doi.org/10.1201/9781315139470.

  • Caradu, C., Spampinato, B., Vrancianu, A., Bérard, X., & Ducasse, E. (2021). Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed to-mography images with deep learning approaches versus physician controlled manual segmentation. Journal of Vascular Surgery, 74(1), 246–256. https://doi.org/10.1016/j.jvs.2020.11.036.

    Article  Google Scholar 

  • Chawla, N.V., Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953.

    Article  Google Scholar 

  • Chen, H., Lundberg, S.M., & Lee, S.-I. (2021). Explaining a Series of Models by Propagating Shapley Values. arXiv:2105.00108.

  • Craven, M., & Shavlik, J.W. (1996). Extracting tree-structured representations of trained networks. Advances in Neural Information Processing Systems, pp. 24–30. https://doi.org/10.5555/2998828.2998832.

  • Dancey, D., McLean, D.A., & Bandar, Z.A. (2004). Decision tree extraction from trained neural networks. American Association for Artificial Intelligence. https://doi.org/10.1162/neco.1997.9.1.205.

  • DeVito, P., Kimyaghalam, A., Shoukry, S., DeVito, R., Williams, J., Kumar, E., & Vitvitsky, E. (2020). Comparing and correlating outcomes between open and percutaneous access in endovascular aneurysm repair in aortic aneurysms using a retrospective cohort study design. International Journal of Vascular Medicine, vol. 2020. https://doi.org/10.1155/2020/8823039.

  • Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4-5), 198–211. https://doi.org/10.1016/j.compmedimag.2007.02.002.

    Article  Google Scholar 

  • Edwards, M.S., Andrews, J.S., Edwards, A.F., Ghanami, R.J., Corriere, M.A., Goodney, P.P., & Hansen, K.J. (2011). Results of endovascular aortic aneurysm repair with general, regional, and local/monitored anesthesia care in the american college of surgeons national surgical quality improvement program database. Journal of Vascular Surgery, 54(5), 1273–1282. https://doi.org/10.1016/j.jvs.2011.04.054.

    Article  Google Scholar 

  • Fix, E., & Hodges, J. (1951). An important contribution to nonparametric discriminant anal-ysis and density estimation. International Statistical Review, 3(57), 233–238. https://doi.org/10.2307/1403796.

    Article  Google Scholar 

  • Froio, A., Belloni, A., Pasquadibisceglie, S., De Ponti, E., & Maggioni, R. (2019). The bicocca aneurysm score: a new score for the prediction of mortality after repair of ruptured abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 58(6), e549–e550. https://doi.org/10.1016/j.ejvs.2019.09.013.

    Article  Google Scholar 

  • Frosst, N., & Hinton, G. (2017). Distilling a neural network into a soft decision tree. arXiv:1711.09784.

  • Gallardo, F., Gamez, F.J., Moreno, J., & Piñero, M.R (2019). Preliminary results of the evar 30-d sacva registry. the first and largest multicentric registry in southern spain of evar for abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 58(6), e828–e829. https://doi.org/10.1016/j.ejvs.2019.09.437.

    Article  Google Scholar 

  • Gentille-Lorente, D.I., & Salvadó-Usach, T. (2011). Screening for abdominal aortic aneu-rysm by means of transthoracic echocardiography. Revista Española de Cardiología (English Edition), 64(5), 395–400.

    Article  Google Scholar 

  • Golla, A.K., Tönnes, C., Russ, T., Bauer, D.F., Froelich, M.F., Diehl, S.J., & Rink, J.S. (2021). Automated screening for abdominal aortic aneurysm in ct scans under clinical conditions using deep learning. Diagnostics, 11(11), 2131. https://doi.org/10.3390/diagnostics11112131.

    Article  Google Scholar 

  • Hahn, S., Morris, C.S., Bertges, D.J., & Wshah, S. (2019). Deep learning for recognition of endoleak after endovascular abdominal aortic aneurysm repair. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019 pp. 759-763). IEEE, https://doi.org/10.1109/ISBI.2019.8759187

  • Hahn, S., Perry, M., Morris, C.S, Wshah, S., & Bertges, D.J. (2020). Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS: Vascular Science, 1, 5–12. https://doi.org/10.1016/j.jvssci.2019.12.003.

    Article  Google Scholar 

  • Hsieh, N.C, Chen, J.F, Lee, K.C, & Tsai, H.C (2011). Using intelligence techniques to predict postoperative morbidity of endovascular aneurysm repair. In Asian Conference on Intelligent Information and Database Systems, (pp. 197–206). Springer, https://doi.org/10.1007/978-3-642-20039-7_20

  • Jerez-Aragonés, J.M., Gómez-Ruiz, J.A., Ramos-Jiménez, G., Muñoz Pérez, J., & Alba-Conejo, E. (2003). A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine, 27(1), 45–63. https://doi.org/10.1016/s0933-3657(02)00086-6.

    Article  Google Scholar 

  • Kruskal, W.H., & Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.

    Article  Google Scholar 

  • Kuivaniemi, H., Ryer, E.J., Elmore, J.R., Hinterseher, I., Smelser, D.T., & Tromp, G. (2014). Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica.

  • Langdon, W.B., Barrett, S.J., & Buxton, B.F. (2002). Combining decision trees and neural networks for drug discovery. In European Conference on Genetic Programming. (pp. 60-70). Berlin, Springer, https://doi.org/10.1007/3-540-45984-7_6

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  • Lee, T.J., Gottschlich, J., Tatbul, N., Metcalf, E., & Zdonik, S. (2018). Precision and recall for range-based anomaly detection. arXiv:1801.03175.

  • Liapis, C.D., Bell, P.R., Mikhailidis, D., Sivenius, J., Nicolaides, A., Fernandes, J.F., & Collaborators, E.G. (2009). Esvs guidelines. invasive treatment for carotid stenosis: indications, techniques. European Journal of Vascular and Endovascular Surgery, 37(4), 1–19. https://doi.org/10.1016/j.ejvs.2008.11.006.

    Article  Google Scholar 

  • Lomazzi, C., Mariscalco, G., Piffaretti, G., Bacuzzi, A., Tozzi, M., Carrafiello, G., & Castelli, P. (2011). Endovascular treatment of elective abdominal aortic aneurysms: independent predictors of early and late mortality. Annals of Vascular Surgery, 25(3), 299–305. https://doi.org/10.1016/j.avsg.2010.08.001.

    Article  Google Scholar 

  • Lu, J.T., Brooks, R., Hahn, S., Chen, J., Buch, V., Kotecha, G., & Tenenholtz, N.A. (2019). Deepaaa: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 723–731). Cham: Springer, https://doi.org/10.1007/978-3-030-32245-8_80

  • Lundberg, S.M., & Lee, S.I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 4765–4774.

  • Mardini, M.T., Hashky, A., & Raś, Z.W. (2021). Personalizing patients to enable shared decision making. Recommender Systems for Medicine and Music 75–90.

  • Mc Namara, K., Alzubaidi, H., & Jackson, J.K. (2019). Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integrated Pharmacy Research & Practice 8(1).

  • Monsalve-Torra, A., Ruiz-Fernandez, D., Marin-Alonso, O., Soriano-Payá, A., Camacho-Mackenzie, J., & Carreño-Jaimes, M (2016). Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. Journal of Biomedical Informatics, 62, 195–201. https://doi.org/10.1016/j.jbi.2016.07.007.

    Article  Google Scholar 

  • Nelson, R., & Staggers, N. (2014). Health informatics: An interprofessional approach. St. Louis: Elsevier.

    Google Scholar 

  • Ostberg, N.P., Zafar, M.A., Mukherjee, S.K., Ziganshin, B.A., & Elefteriades, J.A. (2022). A machine learning approach for predicting complications in descending and thora-coabdominal aortic aneurysms. The Journal of Thoracic and Cardiovascular Surgery.

  • Pasha, S., & Lundgren, J. (2020). Two-stage artificial intelligence clinical decision support system for cardiovascular assessment using convolutional neural networks and decision trees. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020). (vol. 4, pp. 199–205). SciTePress.

  • Raffort, J., Adam, C., Carrier, M., Ballaith, A., Coscas, R., Jean-Baptiste, E., & Lareyre, F. (2020). Artificial intelligence in abdominal aortic aneurysm. Journal of Vascular Surgery, 72 (1), 321–333. https://doi.org/10.1016/j.jvs.2019.12.026.

    Article  Google Scholar 

  • Ray, P., & Chakrabarti, A. (2019). A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis. Applied Computing and Informatics.

  • Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0.

    Article  Google Scholar 

  • Sakalihasan, N., Limet, R., & Defawe, O.D. (2005). Abdominal aortic aneurysm. The Lancet, 365(9470), 1577–1589. https://doi.org/10.1016/S0140-6736(05)66459-8.

    Article  Google Scholar 

  • Sinha, Y.P., Malviya, P., Panda, M., & Ali, S.M. (2018). Contextual care protocol using neural networks and decision trees. IEEE 1–4.

  • Soden, P.A., Zettervall, S.L., Ultee, K.H., Darling, J.D., Buck, D.B., Hile, C.N., & Schermerhorn, M.L. (2016). Outcomes for symptomatic abdominal aortic aneurysms in the american college of surgeons national surgical quality improvement program. Journal of Vascular Surgery, 64(2), 297–305. https://doi.org/10.1016/j.jvs.2016.02.055.

    Article  Google Scholar 

  • Sun, L.Y., Lee, E.W., Zahra, A., & Park, J.H. (2015). Risk factors of cardiovascular disease and their related socio-economical, environmental and health behavioral factors: focused on low-middle income countries-a narrative review article. Iranian Journal of Public Health, 44(4), 435.

    Google Scholar 

  • Suzuki, K. (2012). A review of computer-aided diagnosis in thoracic and colonic imaging. Quantitative Imaging in Medicine and Surgery, 2(3), 163–176. https://doi.org/110.3978/j.issn.2223-4292.2012.09.02.

  • Tarnowska, K.A., Ras, Z.W., & Jastreboff, P.J. (2022). A data-driven approach to clinical decision support in tinnitus retraining therapy. Frontiers in neuroinformatics.

  • Tiftikci, M., Özgür, A., He, Y., & Hur, J. (2019). Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels. BMC Bioinformatics, 20(21), 1–9. https://doi.org/10.1186/s12859-019-3195-5.

    Article  Google Scholar 

  • Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems Man and Communications, 6, 769–772. https://doi.org/10.1109/TSMC.1976.4309452.

    Article  MathSciNet  Google Scholar 

  • Tran, T.N.T., Felfernig, A., Trattner, C., & Holzinger, A. (2021). Recommender systems in the healthcare domain: state-of-the-art and research issues. Journal of Intelligent Information Systems, 57, 171–201. https://doi.org/10.1007/s10844-020-00633-6.

    Article  Google Scholar 

  • Uflacker, R., & Robison, J. (2001). Endovascular treatment of abdominal aortic aneurysms: a review. European Radiology, 11(5), 739–753. https://doi.org/10.1007/s003300000747.

    Article  Google Scholar 

  • van Rijswijk, R.E., Groot Jebbink, E., Holewijn, S., Stoop, N., van Sterkenburg, S.M., & Reijnen, M.M. (2022). Predictors of abdominal aortic aneurysm shrinkage after endovascular repair. Journal of Clinical Medicine, 11(5), 1394. https://doi.org/10.3390/jcm11051394.

    Article  Google Scholar 

  • Varghese, S., & Devadas, L. (2017). Coronary heart disease predictions using expert system and deep learning. International Journal of Advance Research in Science and Engineering (IJARSE)- ISSN 2319-8346.

  • Wang, Y., Zhou, M., Ding, Y., Li, X., Zhou, Z., Shi, Z., & Fu, W. (2022). Deep learning model for predicting the outcome of endovascular abdominal aortic aneurysm repair. Indian Journal of Surgery 1–9.

  • Wilson, D.L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 3, 408–421. https://doi.org/10.1109/TSMC.1972.4309137.

    Article  MathSciNet  Google Scholar 

  • Xiong, J., Wu, Z., Chen, C., & Guo, W. (2016). Chronic obstructive pulmonary disease effect on the prevalence and postoperative outcome of abdominal aortic aneurysms: a meta-analysis. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep25003.

    Article  Google Scholar 

  • Yang, Y., Morillo, I.G., & Hospedales, T.M. (2018). Deep neural decision tree. arXiv:1806.06988.

  • Zarkowsky, D.S., Nejim, B., Hubara, I., Hicks, C.W., Goodney, P.P., & Malas, M.B. (2021). Deep learning and multivariable models select EVAR patients for short-stay discharge. Vascular and Endovascular Surgery, 55(1), 18–25. https://doi.org/10.1177/1538574420954299.

    Article  Google Scholar 

Download references

Acknowledgements

In the data collection of this project, several people have collaborated: A. Montes, R. Conejero, R. R. Carvajal, R. Lainez, T. H. Carbonell, M. Canalejo, F. Manresa, A. Moreno, L. Gómez Pizarro, A.R. Morata, J.P. Reyes, J. Cuenca, I. Rastrollo, J. Fernández Herrera, E. Herrero, R. Yoldi.Also special thanks to C.R. Garrido, from FIBAO, for the statistical design and data analysis of the records. Finally, we also want to thank Fernando Pérez Lara for his help at some points of the experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro J. García-Tejedor.

Ethics declarations

The authors did not receive support from any organization for the submitted work. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

Table 6 Features in EVAR-30D SACVA registry

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogales, A., Gallardo, F., Pajares, M. et al. A semiautomatic method for obtaining a predictive deep learning model and a rule-based system for abdominal aortic aneurysms. J Intell Inf Syst 61, 651–671 (2023). https://doi.org/10.1007/s10844-023-00781-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-023-00781-5

Keywords

Navigation