Skip to main content
Log in

Persistent entropy for separating topological features from noise in vietoris-rips complexes

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Persistent homology studies the evolution of k-dimensional holes along a nested sequence of simplicial complexes (called a filtration). The set of bars (i.e. intervals) representing birth and death times of k-dimensional holes along such sequence is called the persistence barcode. k-Dimensional holes with short lifetimes are informally considered to be “topological noise”, and those with long lifetimes are considered to be “topological features” associated to the filtration. Persistent entropy is defined as the Shannon entropy of the persistence barcode of the filtration. In this paper we present new important properties of persistent entropy of Vietoris-Rips filtrations. Later, using these properties, we derive a simple method for separating topological noise from features in Vietoris-Rips filtrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Binchi, J., Merelli, E., Rucco, M., Petri, G., & Vaccarino, F. (2014). Jholes: A tool for understanding biological complex networks via clique weight rank persistent homology. Electronic Notes in Theoretical Computer Science, 306, 5–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, H., & Tausz, A. (2011). Javaplex tutorial.

  • Mamuye, A., Merelli, E., & Rucco, M. (2015). Persistent homology analysis of the rna folding space. In: Proceedings of the 9th EAI conference on bio-inspired information and communications technologies (BICT 2015).

  • Jonoska, N., & Saito, M. (2013). Discrete and topological models in molecular biology springer.

  • Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 16(1), 77–102.

    MathSciNet  MATH  Google Scholar 

  • Rucco, M., Castiglione, F., Merelli, E., & Pettini, M. (2015). Characterisation of the idiotypic immune network through persistent entropy. In: Proceedings of the Complex.

  • Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., & Krim, H. (2015). An entropy-based persistence barcode. Pattern Recognition, 48(2), 391–401.

    Article  MATH  Google Scholar 

  • Rucco, M., Gonzalez-Diaz, R., Jimenez, M. J., Atienza, N., Cristalli, C., Concettoni, E., Ferrante, A., & Merelli, E. (2017). A new topological entropy-based approach for measuring similarities among piecewise linear functions. Signal Processing, 134, 130–138. doi:10.1016/j.sigpro.2016.12.006. http://www.sciencedirect.com/science/article/pii/S0165168416303486.

    Article  Google Scholar 

  • Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., & Singh, A. (2014). Confidence sets for persistence diagrams. The Annals of Statistics, 6, 2301–2339.

    Article  MathSciNet  MATH  Google Scholar 

  • Atienza, N., Gonzalez-Diaz, R., & Rucco, M. (2016). Separating topological noise from features using persistent entropy, In: Software Technologies: Applications and Foundations - STAF 2016 Collocated Workshops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp, Vienna, Austria, July 4-8, 2016, Revised Selected Papers pp. 3–12. doi:10.1007/978-3-319-50230-4_1.

  • Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American Mathematical Soc.

  • Hatcher, A. (2002). Algebraic topology. Cambridge University Press, Cambridge.

  • Munkres, J.R. (1984). Elements of algebraic topology, Vol. 2, Addison-Wesley.

  • Chazal, F., de Silva, V., & Oudot, S. (2014). Persistence stability for geometric complexes. Geometriae Dedicata, 173(1), 193–214. doi:10.1007/s10711-013-9937-z.

    Article  MathSciNet  MATH  Google Scholar 

  • Nanda, V., & Sazdanović, R. (2014). Simplicial models and topological inference in biological systems. In: Discrete and Topological Models in Molecular Biology, Springer, pp. 109–141.

  • Bendich, P., Marron, J.S., Miller, E., Pieloch, A., & Skwerer, S. (2016). Persistent homology analysis of brain artery tree. Annals of Applied Statistics, 10(1), 198–218.

    Article  MathSciNet  Google Scholar 

  • Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., & Wasserman, L.A. (2015). Stochastic convergence of persistence landscapes and silhouettes. JoCG, 6(2), 140–161.

    MathSciNet  MATH  Google Scholar 

  • Davie, K., Jacobs, J., Atkins, M., Potier, D., Christiaens, V., Halder, G., & Aerts, S. (2015). Discovery of transcription factors and regulatory regions driving in vivo tumor development by atac-seq and faire-seq open chromatin profiling. PLoS Genet, 11(2), e1004994.

    Article  Google Scholar 

  • Nasuti, C., Ferraro, S., Giovannetti, R., Piangerelli, M., & Gabbianelli, R. (2016). Metal and microelement biomarkers of neurodegeneration in early life permethrin-treated rats. Toxics, 4(1), 3.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocio Gonzalez-Diaz.

Additional information

Authors are partially supported by Spanish Government under grant MTM2015-67072-P (MINECO/FEDER, UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atienza, N., Gonzalez-Diaz, R. & Rucco, M. Persistent entropy for separating topological features from noise in vietoris-rips complexes. J Intell Inf Syst 52, 637–655 (2019). https://doi.org/10.1007/s10844-017-0473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-017-0473-4

Keywords

Navigation