Skip to main content
Log in

Consistent feature selection and its application to face recognition

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

In this paper we consider feature selection for face recognition using both labeled and unlabeled data. We introduce the weighted feature space in which the global separability between different classes is maximized and the local similarity of the neighboring data points is preserved. By integrating the global and local structures, a general optimization framework is formulated. We propose a simple solution to this problem, avoiding the matrix eigen-decomposition procedure which is often computationally expensive. Experimental results demonstrate the efficacy of our approach and confirm that utilizing labeled and unlabeled data together does help feature selection with small number of labeled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balakrishnama, S., & Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing.

  • Belhumeur, P., Hespanha, J., Kriegman, D., et al. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions Pattern Analytical Machinist Intelligence, 19(7), 711–720.

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399–2434.

    MathSciNet  MATH  Google Scholar 

  • Cai, D., He, X., Han, J. (2007). Semi-supervised discriminant analysis. IEEE 11th International Conference on Computer Vision, 1–7.

  • Cai, D., He, X., Han, J. (2008). Srda: An efficient algorithm for large-scale discriminant analysis. IEEE Transaction on Knowledge and Data Engineering, 20(1), 1–12.

    Article  Google Scholar 

  • Cai, D., Zhang, C., He, X. (2010). Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 333–342. ACM.

  • Culp, M., & Michailidis, G. (2008). Graph-based semisupervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 174–179.

    Article  Google Scholar 

  • Ding, C., & Peng, H. (2003). Minimum redundancy feature selection from microarray gene expression data. Computational Systems Bioinformatics Conference, 0, 523–528.

    Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). Least angle regression. The Annals of statistics, 32(2), 407–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J. (1989). Regularized discriminant analysis. Journal of the American statistical association, 165–175.

  • Fukunaga, K. (1972). Introduction to statistical pattern recognition: Academic Press.

  • Gilad-Bachrach, R., Navot, A., Tishby, N. (2004). Margin based feature selection - theory and algorithms. In: Proceedings of the twenty-first international conferenceon Machine learning, 43. ACM, New York, NY, USA.

  • Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, (pp. 359–366). San Francisco: Morgan Kaufmann (Publishers Inc.)

    Google Scholar 

  • He, X., Cai, D., Han, J. (2008). Learning a maximum margin subspace for image retrieval. IEEE Transaction on Knowledge and Data Engineering, 20(2), 189–201.

    Article  Google Scholar 

  • He, X., Cai, D., Niyogi, P. (2006). Laplacian score for feature selection. In: Advances in Neural Information Processing Systems 18, (pp. 507–514). Cambridge: MIT Press.

    Google Scholar 

  • Helleputte, T., & Dupont, P. (2009). Partially supervised feature selection with regularized linear models. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 409–416. ACM.

  • Kapoor, A., Grauman, K., Urtasun, R., Darrell, T. (2010). Gaussian processes for object categorization. International Journal of Computer Vision, 88(2), 169–188.

    Article  Google Scholar 

  • Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In: Proceedings of the ninth international workshop on Machine learning, (pp. 249–256). San Francisco: Morgan Kaufmann (Publishers Inc.)

    Google Scholar 

  • Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief In Bergadano, F., & De Raedt, L. (Eds.), Machine Learning: ECML-94, Lecture Notes in Computer Science, vol. 784, pp. 171–182. Berlin / Heidelberg: Springer.

    Google Scholar 

  • Kulis, B., Basu, S., Dhillon, I., Mooney, R. (2009). Semi-supervised graph clustering: a kernel approach. Machine learning, 74(1), 1–22.

    Article  Google Scholar 

  • Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17, 491–502.

    Article  Google Scholar 

  • Liu, Y., Nie, F., Wu, J., Chen, L. (2013). Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing, 105, 12–18.

    Article  Google Scholar 

  • Quinlan, J. (1993). C4. 5: programs for machine learning: Morgan kaufmann.

  • Ren, J., Qiu, Z., Fan, W., Cheng, H., Yu, P. (2008). Forward semi-supervised feature selection. Advances in Knowledge Discovery and Data Mining, 970–976.

  • Rodriguez-Lujan, I., Huerta, R., Elkan, C., Santa Cruz, C. (2010). Quadratic programming feature selection. Journal of Machine Learning Research, 11, 1491–1516.

    MathSciNet  MATH  Google Scholar 

  • Sugiyama, M., Idé, T., Nakajima, S., Sese, J. (2010). Semi-supervised local fisher discriminant analysis for dimensionality reduction. Machine Learining, 78(1), 35–61.

    Article  Google Scholar 

  • Wang, J., Jebara, T., Chang, S.F. (2008). Graph transduction via alternating minimization. In: Proceedings of the 25th international conference on Machine learning, pp. 1144–1151. ACM, New York, NY, USA.

  • Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M. (2003). Use of the zero norm with linear models and kernel methods. The Journal of Machine Learning Research, 3, 1439–1461.

    MATH  Google Scholar 

  • Xu, Z., King, I., Lyu, M., Jin, R. (2010). Discriminative semi-supervised feature selection via manifold regularization. Neural Networks. IEEE Transactions on, 21(7), 1033–1047.

    Google Scholar 

  • Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 40–51.

    Article  Google Scholar 

  • Yang, W., Zhang, S., Liang, W. (2008). A graph based subspace semi-supervised learning framework for dimensionality reduction In Forsyth, D., Torr, P., Zisserman, A. (Eds.), Computer Vision C ECCV 2008, Lecture Notes in Computer Science, vol. 5303, pp. 664–677. Berlin / Heidelberg: Springer.

    Google Scholar 

  • Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205–1224.

    MATH  Google Scholar 

  • Zhao, J., Lu, K., He, X. (2008). Locality sensitive semi-supervised feature selection. Neurocomputing, 71(10), 1842–1849.

    Article  Google Scholar 

  • Zhao, Z., & Liu, H. (2007). Semi-supervised feature selection via spectral analysis. SIAM International Conference on Data Mining.

  • Zhou, D., Bousquet, O., Lal, T., Weston, J., Scholkopf, B. (2004). Learning with local and global consistency. In: Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference, pp. 595–602.

  • Zhu, X. (2006). Semi-supervised learning literature survey. world, 10, 10.

    Google Scholar 

  • Zhu, X., Ghahramani, Z., Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. Proceedings of the Nineteenth International Conference on Machine Learning, pp. 912–919.

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province under Grant no. 2012B040305010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Song, G., Gan, X. et al. Consistent feature selection and its application to face recognition. J Intell Inf Syst 43, 307–321 (2014). https://doi.org/10.1007/s10844-014-0324-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-014-0324-5

Keywords

Navigation