Skip to main content

Advertisement

Log in

When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The conservation of most temperate grassland habitats and their characteristic fauna and flora requires regular low-intensive forms of land-use to counteract natural succession. Although many species tolerate moderate disturbance regimes, some are known to be susceptible to grazing or mowing, thereby causing a management dilemma. One of these species is the Woodland Ringlet butterfly, Erebia medusa. In this study, we analysed which environmental factors determine the occurrence of E. medusa in the Diemel Valley (Central Germany). Furthermore, we conducted microclimatic measurements during the winter months to investigate the role of the litter layer as a microclimatic buffer. Patch occupancy in the Diemel Valley was well explained by the amount of litter present in a patch and connectivity to other inhabited patches. The role of local climatic conditions could not be clarified, due to inter-correlations with connectivity. During the winter, the air temperature inside the litter layer was significantly less variable than above it. We conclude that the current distribution of E. medusa in the Diemel Valley is caused by the combined effect of habitat quality and connectivity, and perhaps also by climatic factors. The importance of the litter layer reflects the dependence of E. medusa on low-intensive or absent land-use. In addition, the litter layer possibly constitutes an essential habitat element, as it buffers temperature fluctuations and thus probably reduces the energy consumption of overwintering larvae. Given the species’ preference for abandoned grasslands, the conservation of E. medusa requires a low-intensity habitat management, for example, by rotational grazing or mowing of small parts of the sites. On the landscape level, the preservation of well-connected habitat networks is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7(3):175–185. doi:10.1023/a:1027330422958

    Article  Google Scholar 

  • Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for Central European butterfly communities: rethinking conservation practices. Conserv Biol 14(3):746–757. doi:10.1046/j.1523-1739.2000.98612.x

    Article  Google Scholar 

  • Bolz R, Geyer A (2003) Rote Liste gefährdeter Tagfalter (Lepidoptera: Rhopalocera) Bayerns. In: Landesamt für Umweltschutz (ed) Rote Liste gefährdeter Tiere Bayerns. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz, pp 217–222

  • Bräu M, Dolek M (2013) Wald-Wiesenvögelchen Coenonympha hero (Linneaus, 1758). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506

    Google Scholar 

  • Bräu M, Dolek M, Stettmer C (2010) Habitat requirements, larval development and food preferences of the German population of the False Ringlet Coenonympha oedippus (Fabricius, 1787) (Lepidoptera: Nymphalidae)—research on the ecological needs to develop management tools. Oedippus 26:41–51

    Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96. doi:10.2307/2684366

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. doi:10.1177/001316446002000104

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58. doi:10.1126/science.1200303

    Article  PubMed  CAS  Google Scholar 

  • Dennis RLH (2010) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, Oxford

    Book  Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1(3):167–176. doi:10.1023/a:1018455714879

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426

    Article  Google Scholar 

  • Dover JW, Rescia A, Fungarino S, Fairburn J, Carey P, Lunt P, Dennis RLH, Dover CJ (2010) Can hay harvesting detrimentally affect adult butterfly abundance? J Insect Conserv 14(4):413–418. doi:10.1007/s10841-010-9267-5

    Article  Google Scholar 

  • Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15(1–2):129–137. doi:10.1007/s10841-010-9332-0

    Article  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter II, vol 2. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12(6):677–688. doi:10.1007/s10841-007-9110-9

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Erhardt A, Thomas JA (1991) Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 213–236

    Chapter  Google Scholar 

  • Fartmann T (2004). Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales—Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 66(1) Münster, pp 1–256

  • Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43(4):335–347

    Google Scholar 

  • Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 68(3/4), Münster, pp 11–57

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. doi:10.1017/s0376892997000088

    Article  Google Scholar 

  • Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217(1–2):48–58. doi:10.1016/j.ecolmodel.2008.05.015

    Article  Google Scholar 

  • García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  • Giraudoux P (2013) pgirmess: data analysis in ecology. R package version 1(5):7

    Google Scholar 

  • Goffart P, Schtickzelle N, Turlure C (2010) Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel JC, Assmann T (eds) Relict species—phylogeography and conservation biology. Springer, Heidelberg, pp 357–370. doi:10.1007/978-3-540-92160-8

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49. doi:10.1038/23876

    Article  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Heikkinen RK, Luoto M, Kuussaari M, Poyry J (2005) New insights into butterfly–environment relationships using partitioning methods. Proc R Soc B-Biol Sci 272(1577):2203–2210. doi:10.1098/rspb.2005.3212

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • IVM (Institute for Environmental Studies) (2013) Agricultural land use intensity data. http://www.ivm.vu.nl/ag-intensity. Accessed 01.12.2013

  • Johst K, Drechsler M, Thomas J, Settele J (2006) Influence of mowing on the persistence of two endangered large blue butterfly species. J Appl Ecol 43(2):333–342. doi:10.1111/j.1365-2664.2006.01125.x

    Article  Google Scholar 

  • Konvicka M, Benes J, Cizek O, Kopecek F, Konvicka O, Vitaz L (2008) How too much care kills species: grassland reserves, agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. J Insect Conserv 12(5):519–525. doi:10.1007/s10841-007-9092-7

    Article  Google Scholar 

  • Krähenmann S, Bissolli P, Rapp J, Ahrens B (2011) Spatial gridding of daily maximum and minimum temperatures in Europe. Meteorol Atmos Phys 114(3–4):151–161. doi:10.1007/s00703-011-0160-x

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) Measurement of observer agreement for categorical data. Biometrics 33(1):159–174. doi:10.2307/2529310

    Article  PubMed  CAS  Google Scholar 

  • Leopold P (2006) Die Larvalökologie des Waldteufels (Erebia aethiops) in Nordrhein-Westfalen und deren Bedeutung für den Erhalt der Art. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 68(3/4), Münster, pp 61–82

  • Lobenstein U (2003) Die Schmetterlingsfauna des mittleren Niedersachsens. Hannover

  • MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Lazpita JG, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59(1):47–69. doi:10.1006/jema.1999.0335

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13(4):603–606. doi:10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  • Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24. doi:10.2307/2685605

    Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145. doi:10.2307/3071919

    Article  Google Scholar 

  • Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13(1):77–87. doi:10.1007/s10841-007-9128-z

    Article  Google Scholar 

  • Müller-Wille W (1981) Westfalen. Landschaftliche Ordnung und Bindung eines Landes (2. Aufl.). Aschendorfsche Verlagsbuchhandlung, Münster

  • Munguira ML, García-Barros E, Martín Cano J (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • Örvössy N, Kõrösi Á, Batáry P, Vozár Á, Peregovits L (2013) Potential metapopulation structure and the effects of habitat quality on population size of the endangered False Ringlet butterfly. J Insect Conserv 17(3):537–547. doi:10.1007/s10841-012-9538-4

    Article  Google Scholar 

  • Pähler R, Dudler H (2010) Die Schmetterlingsfauna von Ostwestfalen-Lippe und angrenzender Gebiete in Nordhessen und Südniedersachsen. Eigenverlag, Verl

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. doi:10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinhardt R, Bolz R (2011). Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands – Bearbeitungsstand: 4. Fassung. Naturschutz und Biologische Vielfalt, vol 3 Bonn - Bad Godesberg

  • Reinhardt R, Sbieschne H, Settele J, Fischer U, Fiedler G (2007) Tagfalter von Sachsen. Beiträge zur Insektenfauna Sachsens, Band 6. Bernhard Klausnitzer, Dresden

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Mueller M (2011) pROC: an open-source package for R and S plus to analyze and compare ROC curves. BMC Bioinform 12(1):77. doi:10.1186/1471-2105-12-77

    Article  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39(1):157–176. doi:10.1046/j.1365-2664.2002.00695.x

    Article  Google Scholar 

  • Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14(9):361–366. doi:10.1016/s0169-5347(99)01664-x

    Article  PubMed  Google Scholar 

  • Schmitt T (1993) Biotopansprüche von Erebia medusa brigobanna FRÜHSTORFER, 1917 (Rundaugen-Mohrenfalter) im Nordsaarland (Lepidoptera, Nymphalidae, Satyrinae). Atalanta 24:33–56

    Google Scholar 

  • Schmitt T, Varga Z, Seitz A (2000) Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl Ecol 1(1):53–59. doi:10.1078/1439-1791-00008

    Article  Google Scholar 

  • Schraml E, Fartmann T (2013) Frühlings-Mohrenfalter Erebia medusa ([Denis & Schiffermüller], 1775). In: Bräu M, Bolz R, Kolbeck H, Nummer A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506

    Google Scholar 

  • Schröder B (2006) Software ROC/AUC-calculation. Evaluating the predictive performance of species distribution models (computer program). http://lec.wzw.tum.de/index.php?id=67&L=1. Accessed 01.09.2013

  • Schröder B, Strauss B, Biedermann R, Binzenhoefer B, Settele J (2009) Predictive species distribution modelling in butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 62–77

    Google Scholar 

  • Schtickzelle N, Baguette M (2009) (Meta)population viability analysis: a crystal ball for the conservation of endangered butterflies? In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 339–352

    Google Scholar 

  • Schulte T, Eller O, Niehuis M, Rennwald E (2007) Die Tagfalter der Pfalz, vol Beiheft 37. Fauna und Flor in Rheinland-Pfalz. GNOR-Eigenverlag, Landau

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31(10):1555–1568. doi:10.1111/j.1365-2699.2004.01076.x

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kuehn I, Van Swaay CAM, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kuehn E, Van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies, vol 1 (Special Issue). BioRisk. Pensoft Publishers, Sofia

  • Slamova I, Klecka J, Konvicka M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6(3):243–254. doi:10.1111/j.1752-4598.2012.00212.x

    Article  Google Scholar 

  • Smit HJ, Metzger MJ, Ewert F (2008) Spatial distribution of grassland productivity and land use in Europe. Agric Syst 98(3):208–219. doi:10.1016/j.agsy.2008.07.004

    Article  Google Scholar 

  • Sonderegger P (2005) Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). Verlag Peter Sonderegger, Brügg bei Biel

    Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365. doi:10.1006/jema.2001.0473

    Article  CAS  Google Scholar 

  • Stuhldreher G, Hermann G, Fartmann T (2014) Cold-adapted species in a warming world—an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol Exp Appl 151(3):270–279. doi:10.1111/eea.12193

    Article  Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B-Biol Sci 267(1439):139–145. doi:10.1098/rspb.2000.0978

    Article  CAS  Google Scholar 

  • Thomas JA, Thomas CD, Simcox DJ, Clarke RT (1986) Ecology and declining status of the silver-spotted skipper butterfly (Hesperia comma) in Britain. J Appl Ecol 23(2):365–380. doi:10.2307/2404023

    Article  Google Scholar 

  • Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2(1):39–46. doi:10.1023/a:1009640706218

    Article  Google Scholar 

  • Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Karl Hoffmann, Schorndorf

    Google Scholar 

  • Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14(4):379–388. doi:10.1007/s10841-010-9269-3

    Article  Google Scholar 

  • Van Dyck H (2012) Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation. Evol Appl 5(2):144–153. doi:10.1111/j.1752-4571.2011.00230.x

    Article  PubMed Central  Google Scholar 

  • Van Swaay CAM, Warren M (1999). Red data book of European butterflies (Rhopalocera). Nature and Environment, vol 99. Council of Europe Publishing, Strasbourg, pp 1–260

  • Van Swaay CAM, Warren M (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature Management and Fisheries, Wageningen

    Google Scholar 

  • Van Swaay CAM, Maes D, Warren MS (2009) Conservation status of European butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 322–338

    Google Scholar 

  • Vanreusel W, Van Dyck H (2007) When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biol Conserv 135(2):202–211. doi:10.1016/j.biocon.2006.10.035

    Article  Google Scholar 

  • Vitousek PM (1994) Beyond global warming—ecology and global change. Ecology 75(7):1861–1876. doi:10.2307/1941591

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395. doi:10.1038/416389a

    Article  PubMed  CAS  Google Scholar 

  • Waring P (2001) Grazing and cutting as conservation management tools: the need for a cautious approach, with some examples of rare moths which have been adversely affected. Entomol Rec J Var 113(5):193–200

    Google Scholar 

  • Weking S, Hermann G, Fartmann T (2013) Effects of mire type, land use and climate on a strongly declining wetland butterfly. J Insect Conserv 17(6):1081–1091. doi:10.1007/s10841-013-9585-5

    Article  Google Scholar 

  • Williams CM, Marshall KE, MacMillan HA, Dzurisin JDK, Hellmann JJ, Sinclair BJ (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS ONE 7(3):e34470. doi:10.1371/journal.pone.0034470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Gabriel Hermann for information on the habitats and population trends of E. medusa in South-west Germany. We are very grateful to Jan Thiele (Institute of Landscape Ecology, University of Münster) for statistical advice. Benjamin Gräler (Institute for Geoinformatics, University of Münster) helped to write the R script for the model validation procedure. Two anonymous referees made valuable comments on an earlier version of the manuscript. This work was funded by a Ph.D. scholarship of the Deutsche Bundesstiftung Umwelt (DBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Stuhldreher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuhldreher, G., Fartmann, T. When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18, 965–979 (2014). https://doi.org/10.1007/s10841-014-9704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9704-y

Keywords

Navigation