Skip to main content
Log in

The influences of landscape structure on butterfly distribution and movement: a review

  • Review Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

We review the literature on the influence of landscape structure on butterfly distribution and movement. We start by examining the definition of landscape commonly used in spatial ecology. Landscape-level processes are reviewed before focusing on the impact of the geometry and spatial arrangement of habitat patches on butterflies e.g. the nature of the matrix, patch size and shape, minimum area requirements, immigration and emigration, and temporal habitat dynamics. The role of landscape elements is reviewed in terms of corridors (and stepping-stones), barriers, nodes, environmental buffers, and prominent landmark features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams LW, Geis AD (1983) Effects of roads on small mammals. J Appl Ecol 20:403–415

    Google Scholar 

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Google Scholar 

  • Alcock J (1987) Leks and hilltopping in insects. J Nat Hist 21:319–328

    Google Scholar 

  • Anderson P (2002) Roads as barriers. In: Sherwood B, Cutler D, Burton J (eds) Wildlife and roads: the ecological impact. Imperial College Press, London, pp 169–184

    Google Scholar 

  • Andrén H (1994) Effect of habitat fragmentation on birds and animals with different proportions of suitable habitat: a review. Oikos 71:355–366

    Google Scholar 

  • Araujo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Google Scholar 

  • Arnold RA (1983) Ecological studies of six endangered butterflies (Lepidoptera, Lycaenidae): island biogeography, patch dynamics, and the design of nature reserves. Univ Calif Publ Entomol 99:1–161

    Google Scholar 

  • Asher J, Warren MS, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford

    Google Scholar 

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160

    Google Scholar 

  • Baguette M, Mennechez G (2004) Resource and habitat patches, landscape ecology and metapopulation biology: a consensual viewpoint. Oikos 106:399–403

    Google Scholar 

  • Baguette M, Mennechez G, Petit S, Schtickzelle N (2003) Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia C.R. Biologies 326:200–209

    Google Scholar 

  • Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108

    Google Scholar 

  • Baker RR (1972) Territorial behaviour of the Nymphalid butterflies, Aglais urticae (L.) and Inachis io (L.). J Anim Ecol 41:453–469

    Google Scholar 

  • Balletto E (1992) Butterflies in Italy: status, problems and prospects. In: Pavlicek-van Beek T, Ovaa AH, van der Made JG (eds) The future of butterflies in Europe. Agricultural University of Wageningen, Wageningen, pp 53–64

    Google Scholar 

  • Balletto E, Casale A (1991) Mediterranean insect conservation. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 121–142

    Google Scholar 

  • Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252

    Google Scholar 

  • Belfrage K, Björklund J, Salominsson L (2005) The effects of farm size and organic farming on diversity of birds, pollinators and plants in a Swedish landscape. Ambio 34:582–588

    PubMed  Google Scholar 

  • Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: Implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Google Scholar 

  • Bergman KO (2001) Population dynamics and the importance of habitat management for conservation of the butterfly Lopinga achine. J Appl Ecol 38:1303–1313

    Google Scholar 

  • Bergman KO, Landin J (2002) Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol Conserv 108:361–369

    Google Scholar 

  • Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619–628

    Google Scholar 

  • Billeter R, Sedivy I, Diekötter T (2003) Distribution and dispersal patterns of the ringlet butterfly (Aphantopus hyperantus) in an agricultural landscape. Bull Geobot Inst ETH 69:45–55

    Google Scholar 

  • Binzenhöfer B, Settele J (2000) Vergleichende autökologische Untersuchungen an Glaucopsyche (Maculinea) nausithous Bergstr. und G. (M.) teleius Bergstr. (Lepidoptera, Lycaenidae) im nördlichen Steigerwald. In: Settele J, Kleinewietfeld S (eds) Populationsökologische Studien an Tagfaltern 2, UFZ-Bericht 2/2000, pp 1–98

  • Binzenhöfer B, Biedermann R, Settele J, Schröder B (2007). Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus. Ecol Res (in press)

  • Bliss P, Kuhn W, Schöpke H, Settele J, Wallaschek M (1996) The hilly landscape of Halle – main study area of the FIFB. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer, Dordrecht, pp 161–168

    Google Scholar 

  • Bos F, Bosveld M, Groenendijk D, Van Swaay C, Wynhoff I, De Vlinderstichting (2006) De Dagvlinders van Nederland, verspreiding en beschreming (Lepidoptera: Hesperioidea, Papilionoidea. – Nederlandse Fauna 7. Leiden. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij & European Invertebrate Survey, The Netherlands

    Google Scholar 

  • Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292

    Google Scholar 

  • Burkey TV (1988) Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments. Oikos 55:75–81

    Google Scholar 

  • Brunzel S, Reich M (1996) Zur Metapopulationsstruktur des Roten Scheckenfalters (Melitaea didyma Esper 1779) auf der Schwäbischen Alb. Z Ökol Nat 5:243–253

    Google Scholar 

  • Carter CI, Anderson MA (1987) Enhancement of lowland forest ridesides and roadsides to benefit wild plants and butterflies. Forestry Commission, Farnham

    Google Scholar 

  • Cassel A, Windig J, Nylin S, Wiklund C (2001) Effects of population size and food stress on fitness-related characters in the scarce heath, a rare butterfly in Western Europe. Conserv Biol 15:1667–1673

    Google Scholar 

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18:561–573

    Google Scholar 

  • Cizek O, Bakesova A, Kuras T, Benes J, Konvicka M (2003) Vacant niche in alpine habitat: the case of an introduced population of the butterfly Erebia epiphron in the Krkonose Mountains. Acta Oecol 24:15–23

    Google Scholar 

  • Clausen HD, Holbeck HB, Reddersen J (2001) Factors influencing abundance of butterflies and burnet moths in the uncultivated habitats of an organic farm in Denmark. Biol Conserv 98:167–178

    Google Scholar 

  • Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc R Soc B Biol Sci 267:1505–1510

    CAS  Google Scholar 

  • Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two British butterfies. Oikos 95:416–424

    Google Scholar 

  • Courtney SP (1980) Studies on the biology of the butterflies Anthocharis cardamines L. and Pieris napi L. in relation to speciation in Pierinae. Unpublished PhD Thesis, University of Durham

  • Cowley MJR, Thomas CD, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR (2001a) Density-distribution relationships in British butterflies. II. An assessment of mechanisms. J Anim Ecol 70:426–441

    Google Scholar 

  • Cowley MJR, Thomas CD, Roy DB, Wilson RJ, León-Cortés JL, Gutiérrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001b) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425

    Google Scholar 

  • Creed ER, Dowdeswell WH, Ford EB, McWhirter KG (1970) Evolutionary studies on Maniola jurtina (Lepidoptera, Satyridae): the “boundary phenomenon” in southern England, 1961–1968. In: Hecht MK, Steere WC (eds) Essays in evolution and genetics. Appleton Century Crafts, New York, pp 263–287

    Google Scholar 

  • Davies ZG, Wilson RJ, Brereton TM, Thomas CD (2005) The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biol Conserv 124:189–198

    Google Scholar 

  • Dawson D (1994) Are habitat corridors conduits for animals and plants in a fragmented landscape? A review of the scientific evidence. English Nature, Peterborough

    Google Scholar 

  • Debinski DM (1994) Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gilletti. Biol Conserv 70:25–31

    Google Scholar 

  • Debinski DM, Ray C, Saveraid EH (2001) Species diversity and the scale of the landscape mosaic: do scales of movement and patch size affect diversity? Biol Conserv 98:179–190

    Google Scholar 

  • Dempster JP, King ML, Lakhani KH (1976) The status of the swallowtail butterfly in Britain. Ecol Ent 1:71–84

    Google Scholar 

  • Dennis RLH (1982) Patrolling behaviour in orange tip butterflies within the Bollin valley in north Cheshire, and a comparison with other pierids. Vasculum 67:17–25

    Google Scholar 

  • Dennis RLH (1986) Motorways and cross-movements. An insect’s ‘mental map’ of the M56 in Cheshire. Bull Am Ent Soc 45:228–243

    Google Scholar 

  • Dennis RLH (1987) Hilltopping as a mate location strategy in a Mediterranean population of Lasiommata megera (L.) (Lepidoptera: Satyridae). Nota Lepid 10:65–70

    Google Scholar 

  • Dennis RLH (1992) An evolutionary history of British butterflies. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 217–245

    Google Scholar 

  • Dennis RLH (1993) Butterflies and climate change. Manchester University Press, Manchester

    Google Scholar 

  • Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Ent 29:744–752

    Google Scholar 

  • Dennis RLH, Bramley MJ (1985) The influence of man and climate on dispersion patterns within a population of adult Lassiommata megera (L.) (Satyridae) at Brereton Heath, Cheshire. Nota Lepid 8:309–324

    Google Scholar 

  • Dennis RLH, Eales H (1997) Patch occupancy in Coenonympha tullia (Lepidoptera: Satyridae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176

    Google Scholar 

  • Dennis RLH, Eales H (1999) Probability of patch site occupancy in Coenonympha tullia (Muller) (Lepidoptera:Satyrinae) determined from geographical and ecological data. Biol Conserv 87:295–301

    Google Scholar 

  • Dennis RLH, Hardy PB (2007) Support for mending the matrix: resource seeking by butterflies in non-resource zones. J Insect Conserv 11:157–168

    Google Scholar 

  • Dennis RLH, Shreeve TG (1988) Hostplant-habitat structure and the evolution of butterfly mate-location behaviour. Zool J Linn Soc 94:301–318

    Google Scholar 

  • Dennis RLH, Shreeve TG (1991) Climatic change and the British butterfly fauna: opportunities and constraints. Biol Conserv 55:1–16

    Google Scholar 

  • Dennis RLH, Shreeve TG (1996) Butterflies on British and Irish Offshore Islands. Gem Publishing, Wallingford

    Google Scholar 

  • Dennis RLH, Shreeve TG (1997) Diversity of butterfly species on British islands: ecological influences underlying the roles of area, isolation and faunal source. Biol J Linn Soc 60:257–275

    Google Scholar 

  • Dennis RLH, Sparks TH (2006) When is a habitat not a habitat? Dramatic resource use changes under differing weather conditions for the butterfly Plebejus argus. Biol Conserv 129:291–301

    Google Scholar 

  • Dennis RLH, Williams WR (1986) Butterfly ‘diversity’. Regressing and a little latitude. Antenna 10:108–112

    Google Scholar 

  • Dennis RLH, Williams WR (1987) Mate-location behaviour in the butterfly Ochlodes venata (Br. And Grey) (Hesperiidae). Flexible strategies and spatial components. J Lepid Soc 41:45–64

    Google Scholar 

  • Dennis RLH, Williams WR, Shreeve TG (1998) Faunal structures among European butterflies: evolutionary implications of bias for geography, endemism and taxonomic affiliation. Ecography 21:181–203

    Google Scholar 

  • Dennis RLH, Donato B, Sparks TH, Pollard E (2000a) Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9:343–359

    Google Scholar 

  • Dennis RLH, Shreeve TG, Olivier A, Coutsis JG (2000b) Contemporary geography dominates butterfly diversity gradients within the Aegean archipelago (Lepidoptera: Papilionidae, Hesperioidea). J Biogeogr 27:1365–1383

    Google Scholar 

  • Dennis RLH, Olivier A, Coutsis JG, Shreeve TG (2001) Butterflies on islands in the Aegean archipelago: predicting numbers of species and incidence of species using geographical variables. Ent Gaz 52:3–39

    Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426

    Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Google Scholar 

  • Dennis RLH, Shreeve TG, Sheppard DA (2007) Species conservation and landscape management: a habitat perspective. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. Royal Entomological Society, London pp 92–127

    Google Scholar 

  • Descimon H, Napolitano M (1992) Genetic management of butterfly populations. In: Pavlicek-van Beek T, Ovaa AH, van der Made JG (eds) The future of butterflies in Europe. Agricultural University of Wageningen, Wageningen, pp 231–238

    Google Scholar 

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of nature reserves. Biol Conserv 7:129–145

    Google Scholar 

  • Dobson A, Jolly A, Rubenstein D (1989) The greenhouse effect and biological diversity. Trends Ecol Evol 4:64–68

    Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218

    Google Scholar 

  • Dover JW (1990) Butterflies and wildlife corridors. In: Nodder C (ed) The game conservancy review of 1989. The Game Conservancy, Fordingbridge, pp 62–64

    Google Scholar 

  • Dover JW (1996) Factors affecting the distribution of satyrid butterflies on arable farmland. J Appl Ecol 33:723–734

    Google Scholar 

  • Dover JW (1997) Conservation headlands: effects on butterfly distribution and behaviour. Agric Ecosyst Environ 63:31–49

    Google Scholar 

  • Dover JW, Fry GLA (2001) Experimental simulation of some visual and physical components of a hedge and the effects on butterfly behaviour in an agricultural landscape. Ent Exp Appl 100:221–233

    Google Scholar 

  • Dover JW, Sparks TH, Greatorex-Davies JN (1997) The importance of shelter for butterflies in open landscapes. J Insect Cons 1:89–97

    Google Scholar 

  • Dover JW, Butt K, Pearson D (1998) Nodes and linear sections of field boundaries: plant species richness, soil nutrients and boundary width. In: Dover JW, Bunce RGH (eds) Key concepts in landscape ecology. IALE(UK), Preston, pp 347–351

    Google Scholar 

  • Dover JW, Sparks T, Clarke S, Gobbett K, Glossop S (2000) Linear features and butterflies: the importance of green lanes. Agric Ecosyst Environ 80:227–242

    Google Scholar 

  • Dowdeswell WH, Fisher RA, Ford EB (1940) The quantitative study of populations in the Lepidoptera. I. Polyommatus icarus Rott. Ann Eugen 10:123–136

    Google Scholar 

  • Dowdeswell WH, Ford EB, McWhirter KG (1957) Further studies on isolation in the butterfly Maniola jurtina L. Heredity 11:51–65

    Google Scholar 

  • Dramstad WE, Olson JD, Forman RTT (1996) Landscape ecology principles in landscape architecture and land-use planning. Harvard University Graduate School of Design, Harvard

    Google Scholar 

  • Dunning J, Danielson B, Pulliam H (1992) Ecological processes that affect populations in complex habitats. Oikos 65:169–175

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    PubMed  CAS  Google Scholar 

  • Ehrlich PR, Davidson SE (1960) Techniques for capture-recapture studies of Lepidoptera populations. J Lepid Soc 14:227–229

    Google Scholar 

  • Ehrlich PR, Hanski I (2004) On the wings of checkerspots. a model system for population biology. Oxford University Press, Oxford

    Google Scholar 

  • Ehrlich PR, Wheye D (1986) “Nonadaptive” hilltopping behavior in male checkerspot butterflies (Euphydryas editha). Am Nat 127:477–483

    Google Scholar 

  • Enfjäll K, Leimar O (2005) Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108:465–472

    Google Scholar 

  • Erhardt A, Thomas JA (1991) Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 213–236

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Google Scholar 

  • Fischer K, Fiedler K (2000) Methodische Aspekte von Fang-Wiederfangstudien am Beispiel der Feuerfalter Lycaena helle und L. hippothoe. Beiträge zur Ökologie 4:157–172

    Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716

    Google Scholar 

  • Forman RTT, Godron M (1981) Patches and structural components for a landscape ecology. Bioscience 31:733–740

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Forrester JA, Leopold DJ, Hafner SD (2005) Maintaining critical habitat in a heavily managed landscape: effects of power line corridor management on Karner blue butterfly (Lycaeides melissa samuelis) habitat. Restor Ecol 13:488–498

    Google Scholar 

  • Frank K (2005) Metapopulation persistence in heterogeneous landscapes: lessons about the effect of stochasticity. Am Nat 165:374–388

    PubMed  Google Scholar 

  • Franco AMA, Hill JK, Kitchke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553

    Google Scholar 

  • Fried JH, Levey DJ, Hogsette JA (2005) Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia 143:645–651

    PubMed  Google Scholar 

  • Fry GLA (1991) Conservation in agricultural ecosystems. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell, Oxford, pp 415–443

    Google Scholar 

  • Fry GLA (1994) Quantifying effects of landscape connectivity and permeability on farmland. In: Dover J (ed) Fragmentation in agricultural landscapes. IALE(UK), Preston, pp 121–128c

  • Fry GLA (1995) Landscape ecology of insect movement in arable ecosystems. In: Glen DM, Greaves MP, Anderson HM (eds) Ecology and integrated farming systems. Wiley, Chichester, pp 177–202

    Google Scholar 

  • Fry GLA, Main AR (1993) Restoring seemingly natural communities on agricultural land. In: Saunders DA, Hobbs RJ, Ehrlich PR (eds) Nature conservation 3: reconstruction of fragmented ecosystems. Surrey Beatty and Sons, Australia, pp 225–241

    Google Scholar 

  • Fry GLA, Robson WJ (1994) The effects of field margins on butterfly movement. In: Boatman ND (ed) Field margins: integrating agriculture and conservation. BCPC, Fareham, pp 111–116

    Google Scholar 

  • Game M (1980) Best shape for nature reserves. Nature 287:630–631

    Google Scholar 

  • Geissler-Strobel S (1999) Landschaftsplanungsorientierte Studien zu Ökologie, Verbreitung, Gefährdung und Schutz der Wiesenknopf-Ameisen-Bläulinge Glaucopsyche (Maculinea) nausithous und Glaucopsyche (Maculinea) teleius. Neue Entomologische Nachrichten (Marktleuthen) 44:1–105

    Google Scholar 

  • Gilpin M, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic Press, London

    Google Scholar 

  • Greatorex-Davies JN, Hall ML, Marrs RH (1992) The conservation of the pearl-bordered fritillary butterfly (Boloria euphrosyne L): preliminary studies on the creation and management of glades in conifer plantations. For Ecol Manage 53:1–14

    Google Scholar 

  • Gutiérrez D (1997) Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: Rhopalocera) in a northern Iberian mountain range. J Biogeogr 24:77–88

    Google Scholar 

  • Gutiérrez D (2005) Effectiveness of existing reserves in the long-term protection of a regionally rare butterfly. Conserv Biol 19:1586–1597

    Google Scholar 

  • Groombridge B (1992) Global biodiversity. Chapman & Hall, London

    Google Scholar 

  • Haddad NM (1999a) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Google Scholar 

  • Haddad NM (1999b) Corridor use predicted from behaviours at habitat boundaries. Am Nat 153:215–227

    Google Scholar 

  • Haddad NM (2000) Corridor length and patch colonisation by a butterfly, Junonia coenia. Conserv Biol 14:738–745

    Google Scholar 

  • Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633

    Google Scholar 

  • Hall ML (1981) Butterfly monitoring scheme: instructions for independent recorders. Institute of Terrestrial Ecology, Abbots Ripton

  • Hamilton GS, Mather PB, Wilson JC (2006) Habitat heterogeneity influences connectivity in a spatially structured pest population. J Appl Ecol 43:219–226

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, Oxford

    Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    PubMed  CAS  Google Scholar 

  • Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, London, pp 5–26

    Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180

    Google Scholar 

  • Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251

    Article  Google Scholar 

  • Hanski I, Saastamoinen M. Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75:91–100

    PubMed  Google Scholar 

  • Hausdorf B, Hennig C (2005) The influence of recent geography, paleogeography and climate on the composition of the fauna of the central Aegean Islands. Biol J Linn Soc 84:785–795

    Google Scholar 

  • Heal H (1965) The wood white, Leptidea sinapis L., and the railways. Irish Nat J 15:8–13

    Google Scholar 

  • Henle K, Lindenmayer DB, Margules CR, Saunders DA, Wissel C (2004) Species survival in fragmented landscapes: where are we now? Biodivers Conserv 13:1–8

    Google Scholar 

  • Higgins LG, Riley ND (1970) A field guide to the butterflies of Britain & Europe. Collins, London

    Google Scholar 

  • Hill CJ (1995) Linear strips of rain forest vegetation as potential dispersal corridors for rain forest insects. Conserv Biol 9:1559–1566

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc R Soc B Biol Sci 266:1197–1206

    Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc B Biol Sci 269:2163–2171

    CAS  Google Scholar 

  • Hobbs RJ (1998) Corridors: theory, practice and the achievement of conservation objectives. In: Dover JW, Bunce RGH (eds) Key concepts in landscape ecology. IALE(UK), Preston, pp 265–279

    Google Scholar 

  • Hobbs RJ, Saunders DA (1993) Re-integrating fragmented landscapes. Towards sustainable production and nature conservation. Springer, Berlin

    Google Scholar 

  • Hovestadt T, Poethke HJ (2006) The control of emigration and its consequences for the survival of populations. Ecol Model 190:443–453

    Google Scholar 

  • Honegger RE (1982) Threatened amphibians and reptiles in Europe. Akad. Verlagsges, Wiesbaden

    Google Scholar 

  • Ide JY (2002) Mating behaviour and light conditions cause seasonal changes in the dispersal pattern of the satyrine butterfly Lethe diana. Ecol Ent 27:33–40

    Google Scholar 

  • Johannesen J, Veith M, Seitz A (1996) Population genetic structure of the butterfly Melitaea didyma (Nymphalidae) along a northern distribution range border. Mol Ecol 5:259–267

    Google Scholar 

  • Johannesen J, Schwing U, Seufert W, Seitz A, Veith M (1997) Analysis of gene flow and habitat patch network for Chazara briseis (Lepidoptera: Satyridae) in an agricultural landscape. Biochem Syst Ecol 25:419–427

    CAS  Google Scholar 

  • Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270

    Google Scholar 

  • Johst K, Drechsler M, Thomas JA, Settele J (2006) Influence of mowing on the persistence of two endangered large blue butterfly species. J Appl Ecol 43:333–342

    Google Scholar 

  • Kapfer A (1993) Biotopschutz am Beispiel der Wiesen und Weiden. Beitr Akad Natur- u Umweltschutz Baden-Württemberg 14:15–37

    Google Scholar 

  • Karlsson B, Wiklund C (2005) Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 74:99–104

    Google Scholar 

  • Kéry M, Matthies D, Fischer M (2001) The effect of plant population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli. J Ecol 89:418–427

    Google Scholar 

  • Kindlmann P, Aviron S, Burel F, Ouin A (2004) Can the assumption of a non-random search improve our prediction of butterfly fluxes between resource patches? Ecol Ent 29:447–456

    Google Scholar 

  • Kindlmann P, Aviron S, Burel F (2005) When is landscape matrix important for determining animal fluxes between resource patches? Ecol Complex 2:150–158

    Google Scholar 

  • Kindvall O, Petersson A (2000) Consequences of modeling interpatch migration as a function of patch geometry when predicting metapopulation extinction risk. Ecol Model 129:101–109

    Google Scholar 

  • King C (1984) Immigrant killers. Oxford University Press, Oxford

    Google Scholar 

  • Kivinen S, Luoto M, Kuussaari M, Helenius J (2006) Multi-species richness of boreal agricultural landscapes: effects of climate, biotope, soil and geographical location. J Biogeogr 33:862–875

    Google Scholar 

  • Kleyer M, Biedermann R, Henle K, Obermaier E, Poethke HJ, Poschlod P, Schröder B, Settele J, Vetterlein D (2007) Mosaic cycles in agricultural landscapes of Northwest Europe. Basic Appl Ecol 8:295–309

    Google Scholar 

  • Konvička M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecol Biogeogr 12:403–410

    Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30: 889–900

    Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361

    Google Scholar 

  • Krauss J, Steffan-Dewenter I, Műller CB, Tscharntke T (2005). Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474

    Google Scholar 

  • Kudrna O (2002) The distribution atlas of European Butterflies. Apollo Books, Stenstrup

    Google Scholar 

  • Kuefler D, Haddad NM (2006) Local versus landscape determinants of butterfly movement behaviors. Ecography 29:549–560

    Google Scholar 

  • Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville Fritillary butterfly, Melitea cinxia. J Appl Ecol 65:791–801

    Google Scholar 

  • Laine AL (2004) A powdery mildew infection on a shared host plant affects the dynamics of the Glanville Fritillary butterfly populations. Oikos 107:329–337

    Google Scholar 

  • León-Cortés JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477

    Google Scholar 

  • Levins R (1970) Extinction. In: Gerstenhaber M (ed) Some mathematical questions in biology. Lectures on mathematics in life sciences, vol II. American Mathematical Society, Providence, pp 77–107

  • Loritz H, Settele J (2006) Eiablageverhalten des Großen Feuerfalters (Lycaena dispar) in SW-Deutschland – Wirtspflanzenwahl, Generationenvergleich und Hinweise zur Erfassung. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68(3/4):243–255

  • Luoto M, Kuussaari M (2002) Modelling butterfly distribution based on remote sensing data. J Biogeogr 29:1027–1037

    Google Scholar 

  • Luoto M, Kuussaari M, Rita H, Salminen J, von Bonsdorff T (2001) Determinants of distribution and abundance in the clouded Apollo butterfly: a landscape ecological approach. Ecography 24:601–617

    Google Scholar 

  • Luoto M, Heikkinen RK, Poyry J, Saarinen K (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. J Biogeogr 33:1764–1778

    Google Scholar 

  • MacArthur RA, Wilson E (1967) The theory of Island Biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacClintock L, Whitcomb BL, Whitcomb BL (1977) Island biogeography and habitat islands of eastern forest. II. Evidence for the value of corridors and the minimization of isolation in preservation of biotic diversity. Am Birds 31:6–16

    Google Scholar 

  • Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96

    Google Scholar 

  • Martin LA, Pullin AS (2004a) Host-plant specialisation and habitat restriction in an endangered insect, Lycaena dispar batavus (Lepidoptera: Lycaenidae) I. Larval feeding and oviposition preferences. Eur J Entomol 101:51–56

    Google Scholar 

  • Martin LA, Pullin AS (2004b) Host-plant specialisation and habitat restriction in an endangered insect, Lycaena dispar batavus (Lepidoptera: Lycaenidae) II. Larval survival on alternative host plants in the field. Eur J Entomol 101:57–62

    Google Scholar 

  • Matter SF, Roland J (2002) An experimental examination of the effects of habitat quality on the dispersal and local abundance of the butterfly Parnassius smintheus. Ecol Ent 27:308–316

    Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074

    PubMed  CAS  Google Scholar 

  • Mennechez G, Schtickzelle N, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Landsc Ecol 18:279–291

    Google Scholar 

  • Merckx T, van Dyck H (2002) Interrelations among habitat use, behavior, and flight related morphology in two contrasting satyrine butterflies, Maniola jurtina and Pyronia tithonus. J Insect Behav 15:541–561

    Google Scholar 

  • Merckx T, van Dyck H (2005) Mate location behaviour of the butterfly Pararge aegeria in woodland and fragmented landscapes. Anim Behav 70:411–416

    Google Scholar 

  • Morecroft MD, Bealey CE, Howells O, Rennie S, Woiwod IP (2002) Effect of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob Ecol Biogeogr 11:7–22

    Google Scholar 

  • Morris MG, Thomas JA, Ward LK, Snazell RG, Pywell RF, Stevenson MJ, Webb NR (1994) Re-creation of early-successional stages for threatened butterflies – an ecological engineering approach. J Env Man 42:119–135

    Google Scholar 

  • Mousson L, Nève G, Baguette M (1999) Metapopulation structure and conservation of the cranberry fritillary Boloria aquilonaris (Lepidoptera, Nymphalidae) in Belgium. Biol Conserv 87:285–293

    Google Scholar 

  • Munguira ML, Thomas JA (1992) Use of road verges by butterfly and burnet populations, and the effect of roads on adult dispersal and mortality. J Appl Ecol 29:316–329

    Google Scholar 

  • Nieminen M, Singer MC, Fortelius W, Schöps K, Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am Nat 157:237–244

    PubMed  CAS  Google Scholar 

  • Norberg U, Enfjäll K, Leimar O (2002) Habitat exploration butterflies – an outdoor cage experiment. Evol Ecol 16:1–14

    Google Scholar 

  • Noss RF, Harris L (1986) Nodes, networks and MUMs: preserving diversity at all scales. Environ Manage 10:299–309

    Google Scholar 

  • Notaro M, Vavrus S, Liu ZY (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Clim 20:70–90

    Google Scholar 

  • Nowicki P, Richter A, Glinka U, Holzschuh A, Toelke U, Henle K, Woyciechowski M, Settele J (2005a) Less input same output – simplified approach for population size assessment in Lepidoptera. Popl Ecol 47:203–212

    Google Scholar 

  • Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005b) Population ecology of the endangered butterflies Maculinea teleius and M. nausithous, and its implications for conservation. Popl Ecol 47:193–202

    Google Scholar 

  • Nowicki P, Pępkowska A, Kudłek J, Skórka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv 140:119–129

    Google Scholar 

  • Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534

    PubMed  Google Scholar 

  • Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Google Scholar 

  • Odendaal FJ, Turchin P, Stermitz FR (1988) An incidental-effect hypothesis explaining aggregation of males in a population of Euphydryas anica. Am Nat 132:735–749

    Google Scholar 

  • Ouin A, Aviron S, Dover J, Burel F (2004) Complementation/ supplementation of resources for butterflies in agricultural landscapes. Agric Ecosyst Environ 103:473–479

    Google Scholar 

  • Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85:242–257

    Google Scholar 

  • Pauler-Fürste R, Kaule G, Settele J (1996) Aspects of the population vulnerability of the large blue butterfly, Glaucopsyche (Maculinea) arion, in south-west Germany. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species Survival in fragmented landscapes. Kluwer, Dordrecht, pp 275–281

    Google Scholar 

  • Pauli H, Gottfried M, Reier K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Google Scholar 

  • Pe’er G, Saltz D, Frank K (2005) Virtual corridors for conservation management. Conserv Biol 19:1997–2003

    Google Scholar 

  • Petit S, Moilanen A, Hanski I, Baguette M (2001) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500

    Google Scholar 

  • Porter K (1981). The population dynamics of small populations of the butterfly Euphydryas aurinia. Unpublished PhD Thesis, Oxford University

  • Pryke SR, Samways MJ (2001) Width of grassland linkages for the conservation of butterflies in South African afforested areas. Biol Conserv 101:85–96

    Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    PubMed  CAS  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70:840–852

    Google Scholar 

  • Riffell SK, Gutzwiller KJ (1996) Plant-species richness in corridor intersections: is intersection shape influential? Landsc Ecol 11:157–168

    Google Scholar 

  • Ross JA, Matter SF, Roland J (2005) Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitat. Landsc Ecol 20:127–135

    Google Scholar 

  • Rounsevell MDA, Berry PM, Harrison PA (2006) Future environmental change impacts on rural land use and biodiversity: a synthesis of the ACCELERATES project. Environ Sci Policy 9:93–100

    Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Change Biol 6:407–416

    Google Scholar 

  • Rundlöf M, Smith HG (2006) The effect of organic farming on butterfly diversity depends on landscape context. J Appl Ecol 43:1121–1127

    Google Scholar 

  • Saccheri IJ, Brakefield PM (2002) Rapid spread of immigrant genomes into inbred populations. Proc R Soc B Biol Sci 269:1073–1078

    Google Scholar 

  • Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487

    PubMed  CAS  Google Scholar 

  • Schmitt T, Seitz A (2002) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae) implications for conservation. Biol Conserv 107:291–297

    Google Scholar 

  • Schmitt T, Habel JC, Besold J, Becker T, Johnen L, Knolle M, Rzepecki A, Schultze J, Zapp A (2006) The chalk-hill blue Polyommatus coridon (Lycaenidae, Lepidoptera) in a highly fragmented landscape: how sedentary is a sedentary butterfly? J Insect Conserv 10:311–316

    Google Scholar 

  • Schneider C (2003) The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol Ent 28:252–256

    Google Scholar 

  • Schneider C, Fry GLA (2001) The influence of landscape grain size on butterfly diversity in grasslands. J Insect Conserv 5:163–171

    Google Scholar 

  • Schneider C, Fry G (2005) Estimating the consequences of land-use changes on butterfly diversity in a marginal landscape in Sweden. J Nat Conserv 13:247–256

    Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72: 533–545

    Google Scholar 

  • Schtickzelle N Mennenchez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87:1057–1065

    Google Scholar 

  • Schtickzelle N, Joiris A, van Dyke H, Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialised butterfly. BMC Evolutionary Biology 7: Art No. 4 Jan 22 http://www.biomedcentral.com/1471-2148/7/4

  • Schweiger O, Dormann CF, Bailey D, Frenzel M (2006) Occurrence pattern of Pararge aegeria (Lepidoptera: Nymphalidae) with respect to habitat suitability, climate and landscape structure. Landsc Ecol 21:989–1001

    Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology (in review)

  • Settele J (1998) Metapopulationsanalyse auf Rasterdatenbasis - Möglichkeiten des Modelleinsatzes und der Ergebnisumsetzung im Landschaftsmaßstab am Beispiel von Tagfaltern. Teubner, Stuttgart & Leipzig

    Google Scholar 

  • Settele J, Geissler S (1988) Schutz des vom Aussterben bedrohten Blauschwarzen Moorbläulings durch Brachenerhalt, Grabenpflege und Biotopverbund im Filderraum. Nat Landsch 63:467–470

    Google Scholar 

  • Settele J, Henle K (2003) Grazing and cutting regimes for old grassland in temperate zones. In: Gherardi F, Corti C, Gualtieri M (eds) Biodiversity conservation and habitat management, encyclopedia of life support systems (EOLSS; chapter E1-67-03-02), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. [http://www.eolss.net; Internet-version 11pp.]

  • Settele J, Margules CR, Poschlod P, Henle K (1996a) Species survival in fragmented landscapes. Kluwer, Dordrecht

    Google Scholar 

  • Settele J, Henle K, Bender C (1996b) Metapopulationen und Biotopverbund: Theorie und Praxis am Beispiel von Schmetterlingen und Reptilien. Z Ökol Naturschutz 5:187–206

    Google Scholar 

  • Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kühn I (2005) ALARM – Assessing LArge-scale environmental Risks for biodiversity with tested Methods. GAIA 14/1:69–72

    Google Scholar 

  • Seufert W (1999) PVA-Fallbeispiel 4: Analyse der Gefährdungsursachen mobiler Tiergruppen am Beispiel der Berghexe (Chazara briseis). In: Amler K, Bahl A, Henle K. Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Ulmer, Stuttgart, pp 180–186

    Google Scholar 

  • Seufert W, Grosser N (1996) A population ecological study of Chazara briseis (Lepidoptera, Satyrinae). In: Settele J, Margules CR, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, pp 268–274

  • Shields O (1967) Hill topping. An ecological study of summit congregation behavior of butterflies on a southern California hill. J Res Lepid 7:191–204

    Google Scholar 

  • Shreeve T (1981) Flight patterns of butterfly species in woodlands. Oecologia (Berl) 51:289–293

    Google Scholar 

  • Shreeve TG (1992) Monitoring butterfly movements. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 120–138

    Google Scholar 

  • Shreeve TG, Dennis RLH (2004) Resources, habitats and metapopulations – whither reality? Oikos 106:404–408

    Google Scholar 

  • Shreeve T, Dennis RLH, Williams WR (1996) Uniformity of wing spotting of Maniola jurtina (L.) in relation to environmental heterogeneity (Lepidoptera: Satyrinae). Nota Lepid 18:77–92

    Google Scholar 

  • Simberloff D, Farr JA, Cox J, Mehlman DW (1992) Movement corridors: conservation bargains or poor investments? Conserv Biol 6:493–504

    Google Scholar 

  • Skórka P, Settele J, Woyciechowski M (2007) Effects of management cessation on grassland butterflies in southern Poland. Agric Ecosyst Environ 121:319–324

    Google Scholar 

  • Spangenberg J (2007) Integrated scenarios for assessing biodiversity risks. Sustain Dev 15:343–356

    Google Scholar 

  • Sparks TH, Porter K, Greatorex-Davies JN, Hall ML, Marrs RH (1994) The choice of oviposition sites in woodland by the Duke of Burgundy butterfly, Hamearis lucina, in England. Biol Conserv 70:257–264

    Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Google Scholar 

  • Summerville KS, Veech JA, Crist TO (2002) Does variation in patch use among butterfly species contribute to nestedness at fine spatial scales. Oikos 97:195–204

    Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by the ringlet butterfly (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365

    Google Scholar 

  • Sutcliffe OL, Thomas CD, Djunijanti P (1997a) Area-dependent migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes. Oecologia 109:229–234

    Google Scholar 

  • Sutcliffe OL, Thomas CD, Yates TJ, Greatorex-Davies JN (1997b) Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologia 109:235–241

    Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE (2003) Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31

    Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Google Scholar 

  • Thomas JA (1983) The ecology and conservation of Lysandra bellargus (Lepidoptera, Lycaenidae) in Britain. J Appl Ecol 20:59–83

    Google Scholar 

  • Thomas JA (1984) The conservation of butterflies in temperate countries: past efforts and lessons for the future. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 333–353

    Google Scholar 

  • Thomas JA (1986) Butterflies of the British Isles. Country Life Books, Twickenham

    Google Scholar 

  • Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific Publications, London, pp 149–197

    Google Scholar 

  • Thomas J (1999) The large blue butterfly – a decade of progress. Br Wildl 11:22–27

    Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B Biol Sci 267:139–145

    CAS  Google Scholar 

  • Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446

    Google Scholar 

  • Thomas JA, Simcox DJ (2005) Contrasting management requirements of Maculinea arion across latitudinal and altitudinal climatic gradients in west Europe. In: Settele J, Kühn E, Thomas JA (eds) Studies on the ecology and conservation of butterflies in Europe, vol. 2: species ecology along a European Gradient: Maculinea butterflies as a Model, Pensoft, Sofia/Moscow, pp 240–244

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc B Biol Sci 268:1791–1796

    CAS  Google Scholar 

  • Thomas CD, Wilson RJ, Lewis OT (2002a) Short-term studies underestimate 30-generation changes in a butterfly metapopulation. Proc R Soc B Biol Sci 269:563–569

    Google Scholar 

  • Thomas JA, Snazell RG, Ward LK (2002b) Are roads harmful or potentially beneficial to butterflies and other insects? In: Sherwood B, Cutler D, Burton J (eds) Wildlife and roads: the ecological impact. Imperial College Press, London, pp 203–222

    Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Turner JR, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205

    Google Scholar 

  • Valtonen A, Saarinen K (2005) A highway intersection as an alternative habitat for a meadow butterfly: effect of mowing, habitat geometry and roads on the ringlet (Aphantopus hyperantus). Ann Zool Fennici 42:545–565

    Google Scholar 

  • Vandewoestijne S, Baguette M (2004a) Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas 141:199–206

    PubMed  CAS  Google Scholar 

  • Vandewoestijne S, Baguette M (2004b) Demographic versus genetic dispersal measures. Popl Ecol 46:281–285

    Google Scholar 

  • Vandewoestijne S, Martin T, Liegeois S, Baguette M (2004) Dispersal, landscape occupancy and population structure in the butterfly Melanargia galathea. Basic Appl Ecol 5:581–591

    Google Scholar 

  • Van Nouhuys S, Hanski I (2002) Colonisation rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. J Anim Ecol 71:639–650

    Google Scholar 

  • Veith M, Bahl A, Seitz A (1999) Populationsgenetik im Naturschutz – Einsatzmöglichkeiten und Fallbeispiele. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Ulmer, Stuttgart, pp 112–126

    Google Scholar 

  • Veith M, Johannesen J, Nicklas-Görgen B, Schmeller D, Schwing U, Seitz A (1996) Genetics of insect populations in fragmented landscapes—A comparison of species and habitats. In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer, Dordrecht, pp 344–355

    Google Scholar 

  • Vera FWM (2000) Grazing ecology and forest history. CAB International, Wallingford

    Google Scholar 

  • Verspui K, Visser S (1992) Ecological research on a population of the heath fritillary (Mellicta athalia). In: Pavlicek-van Beek T, Ovaa AH, van der Made JG (eds) The future of butterflies in Europe. Agricultural University of Wageningen, Wageningen, pp 172–176

    Google Scholar 

  • Vogel K (1995) Populationsbiologie und Habitatwahl des Roten Scheckenfalters (Melitaea didyma, Esper, 1779). Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 10:357–360

    Google Scholar 

  • Vogel K, Johannesen J (1996) Research on population viability of Melitaea didyma (Lepidoptera, Nymphalidae). In: Settele J, Margules CR, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer, Dordrecht, pp 262–267

    Google Scholar 

  • Wahlberg N (2001) On the status of the scarce fritillary Euphydryas maturna (Lepidoptera: Nymphalidae) in Finland. Entomologica Fennica 12:244–250

    Google Scholar 

  • Wahlberg N, Klemetti T, Hanski I (2002a) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232

    Google Scholar 

  • Wahlberg N, Klemetti T, Selonen V, Hanski I (2002b) Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43

    Google Scholar 

  • WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:489–449

    Google Scholar 

  • WallisDeVries MF, van Swaay C (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biol 12:1620–1626

    Google Scholar 

  • Wang R, Wang Y, Chen J, Lei GC, Xu R (2004) Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol Ent 29:367–374

    Google Scholar 

  • Warren MS (1987a) The ecology and conservation of the heath fritillary butterfly, Mellicta athalia. II. Adult population structure and mobility. J Appl Ecol 24:483–498

    Google Scholar 

  • Warren MS (1987b) The ecology and conservation of the heath fritillary butterfly, Mellicta athalia. III. Population dynamics and the effect of habitat management. J Appl Ecol 24:499–513

    Google Scholar 

  • Warren MS (1992a) Butterfly populations. In: Dennis RLH (eds) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 73–92

    Google Scholar 

  • Warren MS (1992b) The conservation of British butterflies. In: Dennis RLH (eds) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 246–274

    Google Scholar 

  • Warren MS (1993a) A review of butterfly conservation in central Southern Britain.1. Protection, evaluation and extinction on prime sites. Biol Conserv 64:25–35

    Google Scholar 

  • Warren MS (1993b) A review of butterfly conservation in central Southern Britain.2. Site management and habitat selection of key species. Biol Conserv 64:37–49

    Google Scholar 

  • Warren MS (1994) The UK status and suspected metapopulation structure of a threatened European Butterfly, the Marsh Fritillary Eurodryas aurinia. Biol Conserv 67:239–249

    Google Scholar 

  • Warren MS, Munguira ML, Ferrin J (1994) Notes on the distribution, habitats and conservation of Eurodryas aurinia (Rottemburg Lepidoptera: Nymphalidae) in Spain. Ent Gaz 45:5–12

    Google Scholar 

  • Warren M, Brereton T, Wigglesworth T (2005) Do agri-environment schemes help butterflies?: experience from the UK. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the Ecology and Conservation of Butterflies in Europe, Vol 1: General Concepts and Case Studies, pp 121–123

  • Watkinson AR, Sutherland WJ (1995) Sources, sinks and pseudo-sinks. J Anim Ecol 64:126–130

    Google Scholar 

  • Watt WB, Chew FS, Snyder LRG, Watt AG, Rothschild DE (1977) Population structure of Pierid butterflies. I. Numbers and movements of some montane Colias species. Oecologia 27:1–22

    Google Scholar 

  • Webb NR (1993) Heathland fragmentation and the potential for expansion. In: Haines-Young R (ed) Landscape ecology in Britain. IALE(UK), Preston, pp 49–54

    Google Scholar 

  • Webb NR (1994) The habitat, the biotope and the landscape. In: Dover JW (ed) Fragmentation in agricultural landscapes. IALE(UK), Preston, pp 21–29

    Google Scholar 

  • Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750

    Google Scholar 

  • Weidemann G, Reich M (1995) Auswirkungen von Straßen auf Tiergemeinschaften der Kalkmagerrasen unter besonderer Berücksichtigung der Rotflügeligen Schnarrschrecke (Psophus stridulus) und des Schachbretts (Melanargia galathea) (Saltatoria, Acrididae und Lepidoptera, Satyridae). Beihefte zu den Veröffentlichungen für Naturschutz und Landschaftspflege Baden-Württemberg 83:407–424

    Google Scholar 

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Google Scholar 

  • Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552

    Google Scholar 

  • Wickman PO (1988) Dynamics of mate searching behaviour in a hilltopping butterfly Lasiommata megera (L.). The effects of weather and male density. Zool J Linn Soc 93:357–377

    Article  Google Scholar 

  • Wickman PO, Garcia-Barros E, Rappe-George R (1995) The location of landmark leks in the small heath butterfly Coenonympha pamphilus: evidence against the hot-spot model. Behav Ecol 6:39–45

    Google Scholar 

  • Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soulé ME (ed) Conservation biology – the science of scarcity and diversity. Sinauer, Sunderland, pp 237–256

    Google Scholar 

  • Wissel C, Stephan T, Zaschke SH (1994) Modelling extinction and survival of small populations. In: Remmert H (ed) Minimum viable populations. Springer, Berlin, pp 67–103

    Google Scholar 

  • With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11:1069–1080

    Google Scholar 

  • Woiwod I, Thomas JA (1993) The ecology of butterflies and moths at the landscape scale. In: Haines-Young R (ed) Landscape Ecology in Britain. IALE(UK), Preston, pp. 76–92

    Google Scholar 

  • Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape; the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:1451–1468

    Google Scholar 

  • Wood PA, Samways MJ (1991) Landscape element pattern and continuity of butterfly flight paths in an ecologically landscaped botanic garden, Natal, South Africa. Biol Conserv 58:149–166

    Google Scholar 

  • Wynhoff I (1998) Lessons from the reintroduction of Maculinea teleius and Maculinea nausithous in the Netherlands. J Insect Conserv 2:47–57

    Google Scholar 

  • Zierl B, Bugmann H (2005) Global change impacts on hydrological processes in Alpine catchments. Water Resour Res 41(2): Art. No. W02028

  • Zimmerman K, Fric Z, Filipová L, Konvička M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera:Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706

    Google Scholar 

  • Zschokke S, Dolt C, Rusterholz HP, Oggier P, Braschler B, Thommen GH, Ludin E, Erhardt A, Baur B (2000) Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572

    Google Scholar 

Download references

Acknowledgements

This paper grew out of an earlier joint project with Matthias Dolek and Martin Konvicka and we gratefully acknowledge their help and assistance. We are also grateful to the large number of colleagues who have helped shape our views on butterfly-landscape interactions over the years. Roger Dennis provided much material and made helpful comments on a draft of this paper. We also acknowledge the helpful advice of two anonymous referees. JS was partly funded by the EU under the FP projects COCONUT (www.coconut-project.net; SSPI-CT-2006–044343) and ALARM (www.alarmproject.net; GOCE-CT-2003-506675; Settele et al. 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dover, J., Settele, J. The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13, 3–27 (2009). https://doi.org/10.1007/s10841-008-9135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-008-9135-8

Keywords

Navigation